abseil-cpp/absl/random/distributions_test.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <random>
21 #include <vector>
22 
23 #include "gtest/gtest.h"
24 #include "absl/random/internal/distribution_test_util.h"
25 #include "absl/random/random.h"
26 
27 namespace {
28 
29 constexpr int kSize = 400000;
30 
31 class RandomDistributionsTest : public testing::Test {};
32 
33 
34 struct Invalid {};
35 
36 template <typename A, typename B>
37 auto InferredUniformReturnT(int)
38  -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
39  std::declval<A>(), std::declval<B>()));
40 
41 template <typename, typename>
42 Invalid InferredUniformReturnT(...);
43 
44 template <typename TagType, typename A, typename B>
45 auto InferredTaggedUniformReturnT(int)
46  -> decltype(absl::Uniform(std::declval<TagType>(),
47  std::declval<absl::InsecureBitGen&>(),
48  std::declval<A>(), std::declval<B>()));
49 
50 template <typename, typename, typename>
51 Invalid InferredTaggedUniformReturnT(...);
52 
53 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
54 //
55 // absl::Uniform(gen, A{}, B{})
56 //
57 // returns the type "Expect".
58 //
59 // This interface can also be used to assert that a given absl::Uniform()
60 // overload does not exist / will not compile. Given types <A, B>, the
61 // expression
62 //
63 // decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
64 //
65 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
66 // resolve (via SFINAE) to the overload which returns type "Invalid". This
67 // allows tests to assert that an invocation such as
68 //
69 // absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
70 //
71 // should not compile, since neither type, float nor int, can precisely
72 // represent both endpoint-values. Writing:
73 //
74 // CheckArgsInferType<float, int, Invalid>()
75 //
76 // will assert that this overload does not exist.
77 template <typename A, typename B, typename Expect>
78 void CheckArgsInferType() {
79  static_assert(
81  std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
82  std::is_same<Expect,
83  decltype(InferredUniformReturnT<B, A>(0))>>::value,
84  "");
85  static_assert(
87  std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
88  absl::IntervalOpenOpenTag, A, B>(0))>,
89  std::is_same<Expect,
90  decltype(InferredTaggedUniformReturnT<
91  absl::IntervalOpenOpenTag, B, A>(0))>>::value,
92  "");
93 }
94 
95 template <typename A, typename B, typename ExplicitRet>
96 auto ExplicitUniformReturnT(int) -> decltype(
97  absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
98  std::declval<A>(), std::declval<B>()));
99 
100 template <typename, typename, typename ExplicitRet>
101 Invalid ExplicitUniformReturnT(...);
102 
103 template <typename TagType, typename A, typename B, typename ExplicitRet>
104 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
105  std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
106  std::declval<A>(), std::declval<B>()));
107 
108 template <typename, typename, typename, typename ExplicitRet>
109 Invalid ExplicitTaggedUniformReturnT(...);
110 
111 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
112 //
113 // absl::Uniform<Expect>(gen, A{}, B{})
114 //
115 // returns the type "Expect", and that the function-overload has the signature
116 //
117 // Expect(URBG&, Expect, Expect)
118 template <typename A, typename B, typename Expect>
119 void CheckArgsReturnExpectedType() {
120  static_assert(
122  std::is_same<Expect,
123  decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
124  std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
125  0))>>::value,
126  "");
127  static_assert(
129  std::is_same<Expect,
130  decltype(ExplicitTaggedUniformReturnT<
132  std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
134  Expect>(0))>>::value,
135  "");
136 }
137 
138 TEST_F(RandomDistributionsTest, UniformTypeInference) {
139  // Infers common types.
140  CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
141  CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
142  CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
143  CheckArgsInferType<int16_t, int16_t, int16_t>();
144  CheckArgsInferType<int32_t, int32_t, int32_t>();
145  CheckArgsInferType<int64_t, int64_t, int64_t>();
146  CheckArgsInferType<float, float, float>();
147  CheckArgsInferType<double, double, double>();
148 
149  // Explicitly-specified return-values override inferences.
150  CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
151  CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
152  CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
153  CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
154  CheckArgsReturnExpectedType<int16_t, int32_t, double>();
155  CheckArgsReturnExpectedType<float, float, double>();
156  CheckArgsReturnExpectedType<int, int, int16_t>();
157 
158  // Properly promotes uint16_t.
159  CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
160  CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
161  CheckArgsInferType<uint16_t, int32_t, int32_t>();
162  CheckArgsInferType<uint16_t, int64_t, int64_t>();
163  CheckArgsInferType<uint16_t, float, float>();
164  CheckArgsInferType<uint16_t, double, double>();
165 
166  // Properly promotes int16_t.
167  CheckArgsInferType<int16_t, int32_t, int32_t>();
168  CheckArgsInferType<int16_t, int64_t, int64_t>();
169  CheckArgsInferType<int16_t, float, float>();
170  CheckArgsInferType<int16_t, double, double>();
171 
172  // Invalid (u)int16_t-pairings do not compile.
173  // See "CheckArgsInferType" comments above, for how this is achieved.
174  CheckArgsInferType<uint16_t, int16_t, Invalid>();
175  CheckArgsInferType<int16_t, uint32_t, Invalid>();
176  CheckArgsInferType<int16_t, uint64_t, Invalid>();
177 
178  // Properly promotes uint32_t.
179  CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
180  CheckArgsInferType<uint32_t, int64_t, int64_t>();
181  CheckArgsInferType<uint32_t, double, double>();
182 
183  // Properly promotes int32_t.
184  CheckArgsInferType<int32_t, int64_t, int64_t>();
185  CheckArgsInferType<int32_t, double, double>();
186 
187  // Invalid (u)int32_t-pairings do not compile.
188  CheckArgsInferType<uint32_t, int32_t, Invalid>();
189  CheckArgsInferType<int32_t, uint64_t, Invalid>();
190  CheckArgsInferType<int32_t, float, Invalid>();
191  CheckArgsInferType<uint32_t, float, Invalid>();
192 
193  // Invalid (u)int64_t-pairings do not compile.
194  CheckArgsInferType<uint64_t, int64_t, Invalid>();
195  CheckArgsInferType<int64_t, float, Invalid>();
196  CheckArgsInferType<int64_t, double, Invalid>();
197 
198  // Properly promotes float.
199  CheckArgsInferType<float, double, double>();
200 }
201 
202 TEST_F(RandomDistributionsTest, UniformExamples) {
203  // Examples.
205  EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
206  EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
207  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
208  static_cast<uint16_t>(0), 1.0f));
209  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
210  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
211  EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
212  EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
213  EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
214 }
215 
216 TEST_F(RandomDistributionsTest, UniformNoBounds) {
218 
219  absl::Uniform<uint8_t>(gen);
220  absl::Uniform<uint16_t>(gen);
221  absl::Uniform<uint32_t>(gen);
222  absl::Uniform<uint64_t>(gen);
223  absl::Uniform<absl::uint128>(gen);
224 }
225 
226 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
227  // The ranges used in this test are undefined behavior.
228  // The results are arbitrary and subject to future changes.
229 
230 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
231  // We're using an x87-compatible FPU, and intermediate operations can be
232  // performed with 80-bit floats. This produces slightly different results from
233  // what we expect below.
234  GTEST_SKIP()
235  << "Skipping the test because we detected x87 floating-point semantics";
236 #endif
237 
239 
240  // <uint>
241  EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
242  EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
243  EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
244  EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
245 
246  constexpr auto m = (std::numeric_limits<uint64_t>::max)();
247 
249  EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
250  EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
251  EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
252  EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
253  EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
254 
255  // <int>
256  EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
257  EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
258  EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
259  EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
260 
261  constexpr auto l = (std::numeric_limits<int64_t>::min)();
262  constexpr auto r = (std::numeric_limits<int64_t>::max)();
263 
266  EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
267  EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
268  EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
269  EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
270  EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
271  EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
272 
273  // <double>
274  const double e = std::nextafter(1.0, 2.0); // 1 + epsilon
275  const double f = std::nextafter(1.0, 0.0); // 1 - epsilon
276  const double g = std::numeric_limits<double>::denorm_min();
277 
278  EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
279  EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
280  EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
281 
282  EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
283  EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
284  EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
285 }
286 
287 // TODO(lar): Validate properties of non-default interval-semantics.
288 TEST_F(RandomDistributionsTest, UniformReal) {
289  std::vector<double> values(kSize);
290 
292  for (int i = 0; i < kSize; i++) {
293  values[i] = absl::Uniform(gen, 0, 1.0);
294  }
295 
296  const auto moments =
298  EXPECT_NEAR(0.5, moments.mean, 0.02);
299  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
300  EXPECT_NEAR(0.0, moments.skewness, 0.02);
301  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
302 }
303 
304 TEST_F(RandomDistributionsTest, UniformInt) {
305  std::vector<double> values(kSize);
306 
308  for (int i = 0; i < kSize; i++) {
309  const int64_t kMax = 1000000000000ll;
310  int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
311  // convert to double.
312  values[i] = static_cast<double>(j) / static_cast<double>(kMax);
313  }
314 
315  const auto moments =
317  EXPECT_NEAR(0.5, moments.mean, 0.02);
318  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
319  EXPECT_NEAR(0.0, moments.skewness, 0.02);
320  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
321 
322  /*
323  // NOTE: These are not supported by absl::Uniform, which is specialized
324  // on integer and real valued types.
325 
326  enum E { E0, E1 }; // enum
327  enum S : int { S0, S1 }; // signed enum
328  enum U : unsigned int { U0, U1 }; // unsigned enum
329 
330  absl::Uniform(gen, E0, E1);
331  absl::Uniform(gen, S0, S1);
332  absl::Uniform(gen, U0, U1);
333  */
334 }
335 
336 TEST_F(RandomDistributionsTest, Exponential) {
337  std::vector<double> values(kSize);
338 
340  for (int i = 0; i < kSize; i++) {
341  values[i] = absl::Exponential<double>(gen);
342  }
343 
344  const auto moments =
346  EXPECT_NEAR(1.0, moments.mean, 0.02);
347  EXPECT_NEAR(1.0, moments.variance, 0.025);
348  EXPECT_NEAR(2.0, moments.skewness, 0.1);
349  EXPECT_LT(5.0, moments.kurtosis);
350 }
351 
352 TEST_F(RandomDistributionsTest, PoissonDefault) {
353  std::vector<double> values(kSize);
354 
356  for (int i = 0; i < kSize; i++) {
357  values[i] = absl::Poisson<int64_t>(gen);
358  }
359 
360  const auto moments =
362  EXPECT_NEAR(1.0, moments.mean, 0.02);
363  EXPECT_NEAR(1.0, moments.variance, 0.02);
364  EXPECT_NEAR(1.0, moments.skewness, 0.025);
365  EXPECT_LT(2.0, moments.kurtosis);
366 }
367 
368 TEST_F(RandomDistributionsTest, PoissonLarge) {
369  constexpr double kMean = 100000000.0;
370  std::vector<double> values(kSize);
371 
373  for (int i = 0; i < kSize; i++) {
374  values[i] = absl::Poisson<int64_t>(gen, kMean);
375  }
376 
377  const auto moments =
379  EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
380  EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
381  EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
382  EXPECT_LT(2.0, moments.kurtosis);
383 }
384 
385 TEST_F(RandomDistributionsTest, Bernoulli) {
386  constexpr double kP = 0.5151515151;
387  std::vector<double> values(kSize);
388 
390  for (int i = 0; i < kSize; i++) {
391  values[i] = absl::Bernoulli(gen, kP);
392  }
393 
394  const auto moments =
396  EXPECT_NEAR(kP, moments.mean, 0.01);
397 }
398 
399 TEST_F(RandomDistributionsTest, Beta) {
400  constexpr double kAlpha = 2.0;
401  constexpr double kBeta = 3.0;
402  std::vector<double> values(kSize);
403 
405  for (int i = 0; i < kSize; i++) {
406  values[i] = absl::Beta(gen, kAlpha, kBeta);
407  }
408 
409  const auto moments =
411  EXPECT_NEAR(0.4, moments.mean, 0.01);
412 }
413 
414 TEST_F(RandomDistributionsTest, Zipf) {
415  std::vector<double> values(kSize);
416 
418  for (int i = 0; i < kSize; i++) {
419  values[i] = absl::Zipf<int64_t>(gen, 100);
420  }
421 
422  // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
423  // Given the parameter v = 1, this gives the following function:
424  // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
425  const auto moments =
427  EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
428 }
429 
430 TEST_F(RandomDistributionsTest, Gaussian) {
431  std::vector<double> values(kSize);
432 
434  for (int i = 0; i < kSize; i++) {
435  values[i] = absl::Gaussian<double>(gen);
436  }
437 
438  const auto moments =
440  EXPECT_NEAR(0.0, moments.mean, 0.02);
441  EXPECT_NEAR(1.0, moments.variance, 0.04);
442  EXPECT_NEAR(0, moments.skewness, 0.2);
443  EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
444 }
445 
446 TEST_F(RandomDistributionsTest, LogUniform) {
447  std::vector<double> values(kSize);
448 
450  for (int i = 0; i < kSize; i++) {
451  values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
452  }
453 
454  // The mean is the sum of the fractional means of the uniform distributions:
455  // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
456  // [64..127][128..255][256..511][512..1023]
457  const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
458  64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
459  (2.0 * 11.0);
460 
461  const auto moments =
463  EXPECT_NEAR(mean, moments.mean, 2) << moments;
464 }
465 
466 } // namespace
kSize
static constexpr Tag kSize
Definition: protobuf/src/google/protobuf/descriptor.cc:873
absl::str_format_internal::LengthMod::j
@ j
absl::IntervalOpenOpenTag
Definition: abseil-cpp/absl/random/internal/uniform_helper.h:60
absl::conjunction
Definition: abseil-cpp/absl/meta/type_traits.h:230
uint16_t
unsigned short uint16_t
Definition: stdint-msvc2008.h:79
absl::Beta
RealType Beta(URBG &&urbg, RealType alpha, RealType beta)
Definition: abseil-cpp/absl/random/distributions.h:268
absl::Gaussian
RealType Gaussian(URBG &&urbg, RealType mean=0, RealType stddev=1)
Definition: abseil-cpp/absl/random/distributions.h:331
GTEST_SKIP
#define GTEST_SKIP()
Definition: perf_counters_gtest.cc:10
testing::Test
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:402
absl::Exponential
RealType Exponential(URBG &&urbg, RealType lambda=1)
Definition: abseil-cpp/absl/random/distributions.h:300
absl::random_internal::ComputeDistributionMoments
DistributionMoments ComputeDistributionMoments(absl::Span< const double > data_points)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:39
EXPECT_EQ
#define EXPECT_EQ(a, b)
Definition: iomgr/time_averaged_stats_test.cc:27
absl::FormatConversionChar::e
@ e
autogen_x86imm.f
f
Definition: autogen_x86imm.py:9
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
EXPECT_NE
#define EXPECT_NE(val1, val2)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2028
gen
OPENSSL_EXPORT GENERAL_NAME * gen
Definition: x509v3.h:495
min
#define min(a, b)
Definition: qsort.h:83
g
struct @717 g
value
const char * value
Definition: hpack_parser_table.cc:165
testing::internal::Invalid
T Invalid()
Definition: bloaty/third_party/googletest/googlemock/include/gmock/internal/gmock-internal-utils.h:356
fix_build_deps.r
r
Definition: fix_build_deps.py:491
absl::random_internal::NonsecureURBGBase
Definition: abseil-cpp/absl/random/internal/nonsecure_base.h:96
EXPECT_LT
#define EXPECT_LT(val1, val2)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2032
A
Definition: miscompile_with_no_unique_address_test.cc:23
values
std::array< int64_t, Size > values
Definition: abseil-cpp/absl/container/btree_benchmark.cc:608
absl::LogUniform
IntType LogUniform(URBG &&urbg, IntType lo, IntType hi, IntType base=2)
Definition: abseil-cpp/absl/random/distributions.h:374
EXPECT_NEAR
#define EXPECT_NEAR(val1, val2, abs_error)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2143
absl::Zipf
IntType Zipf(URBG &&urbg, IntType hi=(std::numeric_limits< IntType >::max)(), double q=2.0, double v=1.0)
Definition: abseil-cpp/absl/random/distributions.h:435
run_grpclb_interop_tests.l
dictionary l
Definition: run_grpclb_interop_tests.py:410
regress.m
m
Definition: regress/regress.py:25
testing::internal::Expect
void Expect(bool condition, const char *file, int line, const std::string &msg)
Definition: bloaty/third_party/googletest/googlemock/include/gmock/internal/gmock-internal-utils.h:282
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
absl::Bernoulli
bool Bernoulli(URBG &&urbg, double p)
Definition: abseil-cpp/absl/random/distributions.h:241
absl::str_format_internal::LengthMod::ll
@ ll
TEST_F
#define TEST_F(test_fixture, test_name)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2367
absl::Uniform
absl::enable_if_t<!std::is_same< R, void >::value, R > Uniform(TagType tag, URBG &&urbg, R lo, R hi)
Definition: abseil-cpp/absl/random/distributions.h:123


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:16