abseil-cpp/absl/random/discrete_distribution.h
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
16 #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
17 
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <numeric>
23 #include <type_traits>
24 #include <utility>
25 #include <vector>
26 
27 #include "absl/random/bernoulli_distribution.h"
28 #include "absl/random/internal/iostream_state_saver.h"
29 #include "absl/random/uniform_int_distribution.h"
30 
31 namespace absl {
33 
34 // absl::discrete_distribution
35 //
36 // A discrete distribution produces random integers i, where 0 <= i < n
37 // distributed according to the discrete probability function:
38 //
39 // P(i|p0,...,pn−1)=pi
40 //
41 // This class is an implementation of discrete_distribution (see
42 // [rand.dist.samp.discrete]).
43 //
44 // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
45 // absl::discrete_distribution takes O(N) time to precompute the probabilities
46 // (where N is the number of possible outcomes in the distribution) at
47 // construction, and then takes O(1) time for each variate generation. Many
48 // other implementations also take O(N) time to construct an ordered sequence of
49 // partial sums, plus O(log N) time per variate to binary search.
50 //
51 template <typename IntType = int>
53  public:
54  using result_type = IntType;
55 
56  class param_type {
57  public:
59 
60  param_type() { init(); }
61 
62  template <typename InputIterator>
63  explicit param_type(InputIterator begin, InputIterator end)
64  : p_(begin, end) {
65  init();
66  }
67 
68  explicit param_type(std::initializer_list<double> weights) : p_(weights) {
69  init();
70  }
71 
72  template <class UnaryOperation>
73  explicit param_type(size_t nw, double xmin, double xmax,
74  UnaryOperation fw) {
75  if (nw > 0) {
76  p_.reserve(nw);
77  double delta = (xmax - xmin) / static_cast<double>(nw);
78  assert(delta > 0);
79  double t = delta * 0.5;
80  for (size_t i = 0; i < nw; ++i) {
81  p_.push_back(fw(xmin + i * delta + t));
82  }
83  }
84  init();
85  }
86 
87  const std::vector<double>& probabilities() const { return p_; }
88  size_t n() const { return p_.size() - 1; }
89 
90  friend bool operator==(const param_type& a, const param_type& b) {
91  return a.probabilities() == b.probabilities();
92  }
93 
94  friend bool operator!=(const param_type& a, const param_type& b) {
95  return !(a == b);
96  }
97 
98  private:
99  friend class discrete_distribution;
100 
101  void init();
102 
103  std::vector<double> p_; // normalized probabilities
104  std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
105 
107  "Class-template absl::discrete_distribution<> must be "
108  "parameterized using an integral type.");
109  };
110 
112 
113  explicit discrete_distribution(const param_type& p) : param_(p) {}
114 
115  template <typename InputIterator>
116  explicit discrete_distribution(InputIterator begin, InputIterator end)
117  : param_(begin, end) {}
118 
119  explicit discrete_distribution(std::initializer_list<double> weights)
120  : param_(weights) {}
121 
122  template <class UnaryOperation>
123  explicit discrete_distribution(size_t nw, double xmin, double xmax,
124  UnaryOperation fw)
125  : param_(nw, xmin, xmax, std::move(fw)) {}
126 
127  void reset() {}
128 
129  // generating functions
130  template <typename URBG>
131  result_type operator()(URBG& g) { // NOLINT(runtime/references)
132  return (*this)(g, param_);
133  }
134 
135  template <typename URBG>
136  result_type operator()(URBG& g, // NOLINT(runtime/references)
137  const param_type& p);
138 
139  const param_type& param() const { return param_; }
140  void param(const param_type& p) { param_ = p; }
141 
142  result_type(min)() const { return 0; }
143  result_type(max)() const {
144  return static_cast<result_type>(param_.n());
145  } // inclusive
146 
147  // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
148  // const std::vector<double>&.
149  const std::vector<double>& probabilities() const {
150  return param_.probabilities();
151  }
152 
153  friend bool operator==(const discrete_distribution& a,
154  const discrete_distribution& b) {
155  return a.param_ == b.param_;
156  }
157  friend bool operator!=(const discrete_distribution& a,
158  const discrete_distribution& b) {
159  return a.param_ != b.param_;
160  }
161 
162  private:
164 };
165 
166 // --------------------------------------------------------------------------
167 // Implementation details only below
168 // --------------------------------------------------------------------------
169 
170 namespace random_internal {
171 
172 // Using the vector `*probabilities`, whose values are the weights or
173 // probabilities of an element being selected, constructs the proportional
174 // probabilities used by the discrete distribution. `*probabilities` will be
175 // scaled, if necessary, so that its entries sum to a value sufficiently close
176 // to 1.0.
177 std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
178  std::vector<double>* probabilities);
179 
180 } // namespace random_internal
181 
182 template <typename IntType>
184  if (p_.empty()) {
185  p_.push_back(1.0);
186  q_.emplace_back(1.0, 0);
187  } else {
188  assert(n() <= (std::numeric_limits<IntType>::max)());
190  }
191 }
192 
193 template <typename IntType>
194 template <typename URBG>
197  URBG& g, // NOLINT(runtime/references)
198  const param_type& p) {
199  const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
200  const auto& q = p.q_[idx];
201  const bool selected = absl::bernoulli_distribution(q.first)(g);
202  return selected ? idx : static_cast<result_type>(q.second);
203 }
204 
205 template <typename CharT, typename Traits, typename IntType>
206 std::basic_ostream<CharT, Traits>& operator<<(
207  std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
210  const auto& probabilities = x.param().probabilities();
211  os << probabilities.size();
212 
214  for (const auto& p : probabilities) {
215  os << os.fill() << p;
216  }
217  return os;
218 }
219 
220 template <typename CharT, typename Traits, typename IntType>
221 std::basic_istream<CharT, Traits>& operator>>(
222  std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
223  discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
224  using param_type = typename discrete_distribution<IntType>::param_type;
226 
227  size_t n;
228  std::vector<double> p;
229 
230  is >> n;
231  if (is.fail()) return is;
232  if (n > 0) {
233  p.reserve(n);
234  for (IntType i = 0; i < n && !is.fail(); ++i) {
235  auto tmp = random_internal::read_floating_point<double>(is);
236  if (is.fail()) return is;
237  p.push_back(tmp);
238  }
239  }
240  x.param(param_type(p.begin(), p.end()));
241  return is;
242 }
243 
245 } // namespace absl
246 
247 #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
absl::discrete_distribution::param_
param_type param_
Definition: abseil-cpp/absl/random/discrete_distribution.h:163
begin
char * begin
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1007
absl::discrete_distribution::param_type::init
void init()
Definition: abseil-cpp/absl/random/discrete_distribution.h:183
absl::random_internal::make_istream_state_saver
istream_state_saver< std::basic_istream< CharT, Traits > > make_istream_state_saver(std::basic_istream< CharT, Traits > &is, std::ios_base::fmtflags flags=std::ios_base::dec|std::ios_base::scientific|std::ios_base::skipws)
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:149
absl::discrete_distribution::operator!=
friend bool operator!=(const discrete_distribution &a, const discrete_distribution &b)
Definition: abseil-cpp/absl/random/discrete_distribution.h:157
absl::operator<<
ABSL_NAMESPACE_BEGIN std::ostream & operator<<(std::ostream &os, absl::LogSeverity s)
Definition: abseil-cpp/absl/base/log_severity.cc:24
absl::discrete_distribution::param_type::param_type
param_type()
Definition: abseil-cpp/absl/random/discrete_distribution.h:60
absl::bernoulli_distribution
Definition: abseil-cpp/absl/random/bernoulli_distribution.h:35
absl::uniform_int_distribution
Definition: abseil-cpp/absl/random/internal/uniform_helper.h:30
absl::discrete_distribution::discrete_distribution
discrete_distribution(InputIterator begin, InputIterator end)
Definition: abseil-cpp/absl/random/discrete_distribution.h:116
absl::discrete_distribution::param_type::probabilities
const std::vector< double > & probabilities() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:87
absl::discrete_distribution::discrete_distribution
discrete_distribution()
Definition: abseil-cpp/absl/random/discrete_distribution.h:111
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
absl::discrete_distribution::discrete_distribution
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw)
Definition: abseil-cpp/absl/random/discrete_distribution.h:123
absl::discrete_distribution::param_type::param_type
param_type(InputIterator begin, InputIterator end)
Definition: abseil-cpp/absl/random/discrete_distribution.h:63
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::discrete_distribution::param_type::q_
std::vector< std::pair< double, size_t > > q_
Definition: abseil-cpp/absl/random/discrete_distribution.h:104
absl::discrete_distribution
Definition: abseil-cpp/absl/random/discrete_distribution.h:52
gen_synthetic_protos.weights
list weights
Definition: gen_synthetic_protos.py:71
absl::discrete_distribution::min
result_type() min() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:142
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::move
constexpr absl::remove_reference_t< T > && move(T &&t) noexcept
Definition: abseil-cpp/absl/utility/utility.h:221
end
char * end
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1008
absl::random_internal::InitDiscreteDistribution
std::vector< std::pair< double, size_t > > InitDiscreteDistribution(std::vector< double > *probabilities)
Definition: abseil-cpp/absl/random/discrete_distribution.cc:23
absl::discrete_distribution::param_type::param_type
param_type(std::initializer_list< double > weights)
Definition: abseil-cpp/absl/random/discrete_distribution.h:68
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
absl::discrete_distribution::reset
void reset()
Definition: abseil-cpp/absl/random/discrete_distribution.h:127
absl::discrete_distribution::param_type::param_type
param_type(size_t nw, double xmin, double xmax, UnaryOperation fw)
Definition: abseil-cpp/absl/random/discrete_distribution.h:73
absl::discrete_distribution::param_type
Definition: abseil-cpp/absl/random/discrete_distribution.h:56
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
absl::discrete_distribution::param
const param_type & param() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:139
absl::discrete_distribution::param_type::operator==
friend bool operator==(const param_type &a, const param_type &b)
Definition: abseil-cpp/absl/random/discrete_distribution.h:90
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
g
struct @717 g
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
setup.idx
idx
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:197
absl::random_internal::stream_precision_helper
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:107
absl::discrete_distribution::operator()
result_type operator()(URBG &g)
Definition: abseil-cpp/absl/random/discrete_distribution.h:131
value
const char * value
Definition: hpack_parser_table.cc:165
absl::operator>>
constexpr uint128 operator>>(uint128 lhs, int amount)
Definition: abseil-cpp/absl/numeric/int128.h:917
absl::discrete_distribution::param_type::n
size_t n() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:88
absl::discrete_distribution::param
void param(const param_type &p)
Definition: abseil-cpp/absl/random/discrete_distribution.h:140
absl::discrete_distribution::discrete_distribution
discrete_distribution(std::initializer_list< double > weights)
Definition: abseil-cpp/absl/random/discrete_distribution.h:119
std
Definition: grpcpp/impl/codegen/async_unary_call.h:407
absl::discrete_distribution::max
result_type() max() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:143
absl::discrete_distribution::param_type::p_
std::vector< double > p_
Definition: abseil-cpp/absl/random/discrete_distribution.h:103
absl::discrete_distribution::discrete_distribution
discrete_distribution(const param_type &p)
Definition: abseil-cpp/absl/random/discrete_distribution.h:113
absl::discrete_distribution::param_type::operator!=
friend bool operator!=(const param_type &a, const param_type &b)
Definition: abseil-cpp/absl/random/discrete_distribution.h:94
absl::discrete_distribution::operator==
friend bool operator==(const discrete_distribution &a, const discrete_distribution &b)
Definition: abseil-cpp/absl/random/discrete_distribution.h:153
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
absl::random_internal::make_ostream_state_saver
ostream_state_saver< std::basic_ostream< CharT, Traits > > make_ostream_state_saver(std::basic_ostream< CharT, Traits > &os, std::ios_base::fmtflags flags=std::ios_base::dec|std::ios_base::left|std::ios_base::scientific)
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:82
absl::discrete_distribution::result_type
IntType result_type
Definition: abseil-cpp/absl/random/discrete_distribution.h:54
absl::discrete_distribution::param_type::discrete_distribution
friend class discrete_distribution
Definition: abseil-cpp/absl/random/discrete_distribution.h:99
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
absl::discrete_distribution::probabilities
const std::vector< double > & probabilities() const
Definition: abseil-cpp/absl/random/discrete_distribution.h:149


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:16