abseil-cpp/absl/random/beta_distribution.h
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
16 #define ABSL_RANDOM_BETA_DISTRIBUTION_H_
17 
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <ostream>
23 #include <type_traits>
24 
25 #include "absl/meta/type_traits.h"
26 #include "absl/random/internal/fast_uniform_bits.h"
27 #include "absl/random/internal/fastmath.h"
28 #include "absl/random/internal/generate_real.h"
29 #include "absl/random/internal/iostream_state_saver.h"
30 
31 namespace absl {
33 
34 // absl::beta_distribution:
35 // Generate a floating-point variate conforming to a Beta distribution:
36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
37 // where the params alpha and beta are both strictly positive real values.
38 //
39 // The support is the open interval (0, 1), but the return value might be equal
40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
41 //
42 // Usage note: One usage is that alpha and beta are counts of number of
43 // successes and failures. When the total number of trials are large, consider
44 // approximating a beta distribution with a Gaussian distribution with the same
45 // mean and variance. One could use the skewness, which depends only on the
46 // smaller of alpha and beta when the number of trials are sufficiently large,
47 // to quantify how far a beta distribution is from the normal distribution.
48 template <typename RealType = double>
50  public:
51  using result_type = RealType;
52 
53  class param_type {
54  public:
56 
58  : alpha_(alpha), beta_(beta) {
59  assert(alpha >= 0);
60  assert(beta >= 0);
63  if (alpha == 0 || beta == 0) {
65  x_ = (alpha >= beta) ? 1 : 0;
66  return;
67  }
68  // a_ = min(beta, alpha), b_ = max(beta, alpha).
69  if (beta < alpha) {
70  inverted_ = true;
71  a_ = beta;
72  b_ = alpha;
73  } else {
74  inverted_ = false;
75  a_ = alpha;
76  b_ = beta;
77  }
78  if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
80  x_ = inverted_ ? result_type(1) : result_type(0);
81  return;
82  }
83  // For threshold values, see also:
84  // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
85  // February, 2009.
86  if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
87  // Choose Joehnk over Cheng when it's faster or when Cheng encounters
88  // numerical issues.
89  method_ = JOEHNK;
90  a_ = result_type(1) / alpha_;
91  b_ = result_type(1) / beta_;
92  if (std::isinf(a_) || std::isinf(b_)) {
94  x_ = inverted_ ? result_type(1) : result_type(0);
95  }
96  return;
97  }
98  if (a_ >= ThresholdForLargeA()) {
100  // Note: on PPC for long double, evaluating
101  // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
102  result_type r = a_ / b_;
103  x_ = (inverted_ ? result_type(1) : r) / (1 + r);
104  return;
105  }
106  x_ = a_ + b_;
107  log_x_ = std::log(x_);
108  if (a_ <= 1) {
109  method_ = CHENG_BA;
110  y_ = result_type(1) / a_;
111  gamma_ = a_ + a_;
112  return;
113  }
114  method_ = CHENG_BB;
115  result_type r = (a_ - 1) / (b_ - 1);
116  y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
117  gamma_ = a_ + result_type(1) / y_;
118  }
119 
120  result_type alpha() const { return alpha_; }
121  result_type beta() const { return beta_; }
122 
123  friend bool operator==(const param_type& a, const param_type& b) {
124  return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
125  }
126 
127  friend bool operator!=(const param_type& a, const param_type& b) {
128  return !(a == b);
129  }
130 
131  private:
132  friend class beta_distribution;
133 
134 #ifdef _MSC_VER
135  // MSVC does not have constexpr implementations for std::log and std::exp
136  // so they are computed at runtime.
137 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
138 #else
139 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
140 #endif
141 
142  // The threshold for whether std::exp(1/a) is finite.
143  // Note that this value is quite large, and a smaller a_ is NOT abnormal.
146  return result_type(1) /
148  }
149 
150  // The threshold for whether a * std::log(a) is finite.
153  return std::exp(
156  ThresholdPadding());
157  }
158 
159 #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
160 
161  // Pad the threshold for large A for long double on PPC. This is done via a
162  // template specialization below.
163  static constexpr result_type ThresholdPadding() { return 0; }
164 
165  enum Method {
166  JOEHNK, // Uses algorithm Joehnk
167  CHENG_BA, // Uses algorithm BA in Cheng
168  CHENG_BB, // Uses algorithm BB in Cheng
169 
170  // Note: See also:
171  // Hung et al. Evaluation of beta generation algorithms. Communications
172  // in Statistics-Simulation and Computation 38.4 (2009): 750-770.
173  // especially:
174  // Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
175  // patchwork rejection. Computing 50.1 (1993): 1-18.
176 
177  DEGENERATE_SMALL, // a_ is abnormally small.
178  DEGENERATE_LARGE, // a_ is abnormally large.
179  };
180 
183 
184  result_type a_; // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
185  result_type b_; // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
186  result_type x_; // alpha + beta, or the result in degenerate cases
187  result_type log_x_; // log(x_)
188  result_type y_; // "beta" in Cheng
189  result_type gamma_; // "gamma" in Cheng
190 
192 
193  // Placing this last for optimal alignment.
194  // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
195  bool inverted_;
196 
198  "Class-template absl::beta_distribution<> must be "
199  "parameterized using a floating-point type.");
200  };
201 
203 
205  : param_(alpha, beta) {}
206 
207  explicit beta_distribution(const param_type& p) : param_(p) {}
208 
209  void reset() {}
210 
211  // Generating functions
212  template <typename URBG>
213  result_type operator()(URBG& g) { // NOLINT(runtime/references)
214  return (*this)(g, param_);
215  }
216 
217  template <typename URBG>
218  result_type operator()(URBG& g, // NOLINT(runtime/references)
219  const param_type& p);
220 
221  param_type param() const { return param_; }
222  void param(const param_type& p) { param_ = p; }
223 
224  result_type(min)() const { return 0; }
225  result_type(max)() const { return 1; }
226 
227  result_type alpha() const { return param_.alpha(); }
228  result_type beta() const { return param_.beta(); }
229 
230  friend bool operator==(const beta_distribution& a,
231  const beta_distribution& b) {
232  return a.param_ == b.param_;
233  }
234  friend bool operator!=(const beta_distribution& a,
235  const beta_distribution& b) {
236  return a.param_ != b.param_;
237  }
238 
239  private:
240  template <typename URBG>
241  result_type AlgorithmJoehnk(URBG& g, // NOLINT(runtime/references)
242  const param_type& p);
243 
244  template <typename URBG>
245  result_type AlgorithmCheng(URBG& g, // NOLINT(runtime/references)
246  const param_type& p);
247 
248  template <typename URBG>
249  result_type DegenerateCase(URBG& g, // NOLINT(runtime/references)
250  const param_type& p) {
251  if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
252  // Returns 0 or 1 with equal probability.
254  return static_cast<result_type>((fast_u8(g) & 0x10) !=
255  0); // pick any single bit.
256  }
257  return p.x_;
258  }
259 
262 };
263 
264 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
265  defined(__ppc__) || defined(__PPC__)
266 // PPC needs a more stringent boundary for long double.
267 template <>
268 constexpr long double
270  return 10;
271 }
272 #endif
273 
274 template <typename RealType>
275 template <typename URBG>
278  URBG& g, // NOLINT(runtime/references)
279  const param_type& p) {
282  using real_type =
284 
285  // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
286  // Zufallszahlen. Metrika 8.1 (1964): 5-15.
287  // This method is described in Knuth, Vol 2 (Third Edition), pp 134.
288 
289  result_type u, v, x, y, z;
290  for (;;) {
291  u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
292  fast_u64_(g));
293  v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
294  fast_u64_(g));
295 
296  // Direct method. std::pow is slow for float, so rely on the optimizer to
297  // remove the std::pow() path for that case.
299  x = std::pow(u, p.a_);
300  y = std::pow(v, p.b_);
301  z = x + y;
302  if (z > 1) {
303  // Reject if and only if `x + y > 1.0`
304  continue;
305  }
306  if (z > 0) {
307  // When both alpha and beta are small, x and y are both close to 0, so
308  // divide by (x+y) directly may result in nan.
309  return x / z;
310  }
311  }
312 
313  // Log transform.
314  // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
315  // since u, v <= 1.0, x, y < 0.
316  x = std::log(u) * p.a_;
317  y = std::log(v) * p.b_;
318  if (!std::isfinite(x) || !std::isfinite(y)) {
319  continue;
320  }
321  // z = log( pow(u, a) + pow(v, b) )
322  z = x > y ? (x + std::log(1 + std::exp(y - x)))
323  : (y + std::log(1 + std::exp(x - y)));
324  // Reject iff log(x+y) > 0.
325  if (z > 0) {
326  continue;
327  }
328  return std::exp(x - z);
329  }
330 }
331 
332 template <typename RealType>
333 template <typename URBG>
336  URBG& g, // NOLINT(runtime/references)
337  const param_type& p) {
340  using real_type =
342 
343  // Based on Cheng, Russell CH. Generating beta variates with nonintegral
344  // shape parameters. Communications of the ACM 21.4 (1978): 317-322.
345  // (https://dl.acm.org/citation.cfm?id=359482).
346  static constexpr result_type kLogFour =
347  result_type(1.3862943611198906188344642429163531361); // log(4)
348  static constexpr result_type kS =
349  result_type(2.6094379124341003746007593332261876); // 1+log(5)
350 
351  const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
352  result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
353  for (;;) {
354  u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
355  fast_u64_(g));
356  u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
357  fast_u64_(g));
358  v = p.y_ * std::log(u1 / (1 - u1));
359  w = p.a_ * std::exp(v);
360  bw_inv = result_type(1) / (p.b_ + w);
361  r = p.gamma_ * v - kLogFour;
362  s = p.a_ + r - w;
363  z = u1 * u1 * u2;
364  if (!use_algorithm_ba && s + kS >= 5 * z) {
365  break;
366  }
367  t = std::log(z);
368  if (!use_algorithm_ba && s >= t) {
369  break;
370  }
371  lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
372  if (lhs >= t) {
373  break;
374  }
375  }
376  return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
377 }
378 
379 template <typename RealType>
380 template <typename URBG>
382 beta_distribution<RealType>::operator()(URBG& g, // NOLINT(runtime/references)
383  const param_type& p) {
384  switch (p.method_) {
385  case param_type::JOEHNK:
386  return AlgorithmJoehnk(g, p);
390  return AlgorithmCheng(g, p);
391  default:
392  return DegenerateCase(g, p);
393  }
394 }
395 
396 template <typename CharT, typename Traits, typename RealType>
397 std::basic_ostream<CharT, Traits>& operator<<(
398  std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
402  os << x.alpha() << os.fill() << x.beta();
403  return os;
404 }
405 
406 template <typename CharT, typename Traits, typename RealType>
407 std::basic_istream<CharT, Traits>& operator>>(
408  std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
409  beta_distribution<RealType>& x) { // NOLINT(runtime/references)
411  using param_type = typename beta_distribution<RealType>::param_type;
413 
415  alpha = random_internal::read_floating_point<result_type>(is);
416  if (is.fail()) return is;
417  beta = random_internal::read_floating_point<result_type>(is);
418  if (!is.fail()) {
419  x.param(param_type(alpha, beta));
420  }
421  return is;
422 }
423 
425 } // namespace absl
426 
427 #endif // ABSL_RANDOM_BETA_DISTRIBUTION_H_
absl::beta_distribution::param_type::DEGENERATE_LARGE
@ DEGENERATE_LARGE
Definition: abseil-cpp/absl/random/beta_distribution.h:178
absl::beta_distribution::param_type::a_
result_type a_
Definition: abseil-cpp/absl/random/beta_distribution.h:184
absl::beta_distribution::param
param_type param() const
Definition: abseil-cpp/absl/random/beta_distribution.h:221
absl::random_internal::make_istream_state_saver
istream_state_saver< std::basic_istream< CharT, Traits > > make_istream_state_saver(std::basic_istream< CharT, Traits > &is, std::ios_base::fmtflags flags=std::ios_base::dec|std::ios_base::scientific|std::ios_base::skipws)
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:149
absl::beta_distribution::param_type::gamma_
result_type gamma_
Definition: abseil-cpp/absl/random/beta_distribution.h:189
absl::operator<<
ABSL_NAMESPACE_BEGIN std::ostream & operator<<(std::ostream &os, absl::LogSeverity s)
Definition: abseil-cpp/absl/base/log_severity.cc:24
google::protobuf.internal::real_type
FieldDescriptor::Type real_type(FieldType type)
Definition: bloaty/third_party/protobuf/src/google/protobuf/extension_set_heavy.cc:128
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
absl::conditional_t
typename std::conditional< B, T, F >::type conditional_t
Definition: abseil-cpp/absl/meta/type_traits.h:634
absl::beta_distribution::param_type::ThresholdForSmallA
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type ThresholdForSmallA()
Definition: abseil-cpp/absl/random/beta_distribution.h:145
u
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:351
absl::beta_distribution::param_type::y_
result_type y_
Definition: abseil-cpp/absl/random/beta_distribution.h:188
absl::FormatConversionChar::s
@ s
absl::beta_distribution::param_type::operator==
friend bool operator==(const param_type &a, const param_type &b)
Definition: abseil-cpp/absl/random/beta_distribution.h:123
absl::beta_distribution::param_type::method_
Method method_
Definition: abseil-cpp/absl/random/beta_distribution.h:191
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
absl::random_internal::GeneratePositiveTag
Definition: abseil-cpp/absl/random/internal/generate_real.h:36
absl::beta_distribution::param_type::x_
result_type x_
Definition: abseil-cpp/absl/random/beta_distribution.h:186
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::beta_distribution::alpha
result_type alpha() const
Definition: abseil-cpp/absl/random/beta_distribution.h:227
absl::beta_distribution::max
result_type() max() const
Definition: abseil-cpp/absl/random/beta_distribution.h:225
absl::beta_distribution::param_type::b_
result_type b_
Definition: abseil-cpp/absl/random/beta_distribution.h:185
absl::random_internal::GenerateRealFromBits
RealType GenerateRealFromBits(uint64_t bits, int exp_bias=0)
Definition: abseil-cpp/absl/random/internal/generate_real.h:70
absl::beta_distribution::AlgorithmCheng
result_type AlgorithmCheng(URBG &g, const param_type &p)
Definition: abseil-cpp/absl/random/beta_distribution.h:335
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::beta_distribution::param_type::log_x_
result_type log_x_
Definition: abseil-cpp/absl/random/beta_distribution.h:187
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
absl::beta_distribution::reset
void reset()
Definition: abseil-cpp/absl/random/beta_distribution.h:209
absl::beta_distribution::operator()
result_type operator()(URBG &g)
Definition: abseil-cpp/absl/random/beta_distribution.h:213
absl::beta_distribution::param_type::param_type
param_type(result_type alpha, result_type beta)
Definition: abseil-cpp/absl/random/beta_distribution.h:57
setup.v
v
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
absl::beta_distribution::AlgorithmJoehnk
result_type AlgorithmJoehnk(URBG &g, const param_type &p)
Definition: abseil-cpp/absl/random/beta_distribution.h:277
ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
Definition: abseil-cpp/absl/random/beta_distribution.h:139
absl::beta_distribution::DegenerateCase
result_type DegenerateCase(URBG &g, const param_type &p)
Definition: abseil-cpp/absl/random/beta_distribution.h:249
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
absl::beta_distribution::beta_distribution
beta_distribution(result_type alpha, result_type beta=1)
Definition: abseil-cpp/absl/random/beta_distribution.h:204
absl::beta_distribution::param_type::operator!=
friend bool operator!=(const param_type &a, const param_type &b)
Definition: abseil-cpp/absl/random/beta_distribution.h:127
absl::beta_distribution::param_type::inverted_
bool inverted_
Definition: abseil-cpp/absl/random/beta_distribution.h:195
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
g
struct @717 g
absl::beta_distribution::param_type::alpha_
result_type alpha_
Definition: abseil-cpp/absl/random/beta_distribution.h:181
absl::random_internal::stream_precision_helper
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:107
absl::beta_distribution::param_type::JOEHNK
@ JOEHNK
Definition: abseil-cpp/absl/random/beta_distribution.h:166
value
const char * value
Definition: hpack_parser_table.cc:165
absl::beta_distribution::fast_u64_
random_internal::FastUniformBits< uint64_t > fast_u64_
Definition: abseil-cpp/absl/random/beta_distribution.h:261
absl::operator>>
constexpr uint128 operator>>(uint128 lhs, int amount)
Definition: abseil-cpp/absl/numeric/int128.h:917
absl::beta_distribution::beta
result_type beta() const
Definition: abseil-cpp/absl/random/beta_distribution.h:228
absl::beta_distribution::param_type::beta_
result_type beta_
Definition: abseil-cpp/absl/random/beta_distribution.h:182
absl::beta_distribution::beta_distribution
beta_distribution(const param_type &p)
Definition: abseil-cpp/absl/random/beta_distribution.h:207
absl::beta_distribution::param_type::alpha
result_type alpha() const
Definition: abseil-cpp/absl/random/beta_distribution.h:120
absl::beta_distribution::param_type::ThresholdForLargeA
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type ThresholdForLargeA()
Definition: abseil-cpp/absl/random/beta_distribution.h:152
absl::beta_distribution::min
result_type() min() const
Definition: abseil-cpp/absl/random/beta_distribution.h:224
fix_build_deps.r
r
Definition: fix_build_deps.py:491
tests.google.protobuf.internal.message_test.isinf
def isinf(val)
Definition: bloaty/third_party/protobuf/python/compatibility_tests/v2.5.0/tests/google/protobuf/internal/message_test.py:68
absl::beta_distribution::param_type::CHENG_BB
@ CHENG_BB
Definition: abseil-cpp/absl/random/beta_distribution.h:168
log
bool log
Definition: abseil-cpp/absl/synchronization/mutex.cc:310
absl::beta_distribution::param
void param(const param_type &p)
Definition: abseil-cpp/absl/random/beta_distribution.h:222
absl::beta_distribution::param_type::beta
result_type beta() const
Definition: abseil-cpp/absl/random/beta_distribution.h:121
absl::beta_distribution::operator!=
friend bool operator!=(const beta_distribution &a, const beta_distribution &b)
Definition: abseil-cpp/absl/random/beta_distribution.h:234
absl::beta_distribution::param_type
Definition: abseil-cpp/absl/random/beta_distribution.h:53
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
absl::beta_distribution::param_
param_type param_
Definition: abseil-cpp/absl/random/beta_distribution.h:260
absl::beta_distribution::param_type::beta_distribution
friend class beta_distribution
Definition: abseil-cpp/absl/random/beta_distribution.h:132
absl::beta_distribution::result_type
RealType result_type
Definition: abseil-cpp/absl/random/beta_distribution.h:51
isfinite
#define isfinite
Definition: bloaty/third_party/protobuf/conformance/third_party/jsoncpp/jsoncpp.cpp:4014
absl::random_internal::make_ostream_state_saver
ostream_state_saver< std::basic_ostream< CharT, Traits > > make_ostream_state_saver(std::basic_ostream< CharT, Traits > &os, std::ios_base::fmtflags flags=std::ios_base::dec|std::ios_base::left|std::ios_base::scientific)
Definition: abseil-cpp/absl/random/internal/iostream_state_saver.h:82
absl::beta_distribution::beta_distribution
beta_distribution()
Definition: abseil-cpp/absl/random/beta_distribution.h:202
ABSL_FALLTHROUGH_INTENDED
#define ABSL_FALLTHROUGH_INTENDED
Definition: abseil-cpp/absl/base/attributes.h:641
absl::beta_distribution::param_type::CHENG_BA
@ CHENG_BA
Definition: abseil-cpp/absl/random/beta_distribution.h:167
absl::beta_distribution::operator==
friend bool operator==(const beta_distribution &a, const beta_distribution &b)
Definition: abseil-cpp/absl/random/beta_distribution.h:230
absl::beta_distribution
Definition: abseil-cpp/absl/random/beta_distribution.h:49
Method
Definition: bloaty/third_party/protobuf/src/google/protobuf/api.pb.h:320
absl::random_internal::FastUniformBits
Definition: abseil-cpp/absl/random/internal/fast_uniform_bits.h:89
absl::beta_distribution::param_type::ThresholdPadding
static constexpr result_type ThresholdPadding()
Definition: abseil-cpp/absl/random/beta_distribution.h:163
absl::beta_distribution::param_type::DEGENERATE_SMALL
@ DEGENERATE_SMALL
Definition: abseil-cpp/absl/random/beta_distribution.h:177


grpc
Author(s):
autogenerated on Fri May 16 2025 02:57:46