ARMAddressingModes.h
Go to the documentation of this file.
1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 /* Capstone Disassembly Engine */
15 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
16 
17 #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
18 #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
19 
20 #include "capstone/platform.h"
21 #include "../../MathExtras.h"
22 
24 typedef enum ARM_AM_ShiftOpc {
32 
33 typedef enum ARM_AM_AddrOpc {
37 
38 static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
39 {
40  return Op == ARM_AM_sub ? "-" : "";
41 }
42 
43 static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
44 {
45  switch (Op) {
46  default: return ""; //llvm_unreachable("Unknown shift opc!");
47  case ARM_AM_asr: return "asr";
48  case ARM_AM_lsl: return "lsl";
49  case ARM_AM_lsr: return "lsr";
50  case ARM_AM_ror: return "ror";
51  case ARM_AM_rrx: return "rrx";
52  }
53 }
54 
55 static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
56 {
57  switch (Op) {
58  default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!");
59  case ARM_AM_asr: return 2;
60  case ARM_AM_lsl: return 0;
61  case ARM_AM_lsr: return 1;
62  case ARM_AM_ror: return 3;
63  }
64 }
65 
66 typedef enum ARM_AM_AMSubMode {
73 
74 static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
75 {
76  switch (Mode) {
77  default: return "";
78  case ARM_AM_ia: return "ia";
79  case ARM_AM_ib: return "ib";
80  case ARM_AM_da: return "da";
81  case ARM_AM_db: return "db";
82  }
83 }
84 
87 static inline unsigned rotr32(unsigned Val, unsigned Amt)
88 {
89  //assert(Amt < 32 && "Invalid rotate amount");
90  return (Val >> Amt) | (Val << ((32-Amt)&31));
91 }
92 
95 static inline unsigned rotl32(unsigned Val, unsigned Amt)
96 {
97  //assert(Amt < 32 && "Invalid rotate amount");
98  return (Val << Amt) | (Val >> ((32-Amt)&31));
99 }
100 
101 //===--------------------------------------------------------------------===//
102 // Addressing Mode #1: shift_operand with registers
103 //===--------------------------------------------------------------------===//
104 //
105 // This 'addressing mode' is used for arithmetic instructions. It can
106 // represent things like:
107 // reg
108 // reg [asr|lsl|lsr|ror|rrx] reg
109 // reg [asr|lsl|lsr|ror|rrx] imm
110 //
111 // This is stored three operands [rega, regb, opc]. The first is the base
112 // reg, the second is the shift amount (or reg0 if not present or imm). The
113 // third operand encodes the shift opcode and the imm if a reg isn't present.
114 //
115 static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
116 {
117  return ShOp | (Imm << 3);
118 }
119 
120 static inline unsigned getSORegOffset(unsigned Op)
121 {
122  return Op >> 3;
123 }
124 
125 static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
126 {
127  return (ARM_AM_ShiftOpc)(Op & 7);
128 }
129 
132 static inline unsigned getSOImmValImm(unsigned Imm)
133 {
134  return Imm & 0xFF;
135 }
136 
139 static inline unsigned getSOImmValRot(unsigned Imm)
140 {
141  return (Imm >> 8) * 2;
142 }
143 
148 static inline unsigned getSOImmValRotate(unsigned Imm)
149 {
150  unsigned TZ, RotAmt;
151  // 8-bit (or less) immediates are trivially shifter_operands with a rotate
152  // of zero.
153  if ((Imm & ~255U) == 0) return 0;
154 
155  // Use CTZ to compute the rotate amount.
156  TZ = CountTrailingZeros_32(Imm);
157 
158  // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
159  // not 9.
160  RotAmt = TZ & ~1;
161 
162  // If we can handle this spread, return it.
163  if ((rotr32(Imm, RotAmt) & ~255U) == 0)
164  return (32-RotAmt)&31; // HW rotates right, not left.
165 
166  // For values like 0xF000000F, we should ignore the low 6 bits, then
167  // retry the hunt.
168  if (Imm & 63U) {
169  unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
170  unsigned RotAmt2 = TZ2 & ~1;
171  if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
172  return (32-RotAmt2)&31; // HW rotates right, not left.
173  }
174 
175  // Otherwise, we have no way to cover this span of bits with a single
176  // shifter_op immediate. Return a chunk of bits that will be useful to
177  // handle.
178  return (32-RotAmt)&31; // HW rotates right, not left.
179 }
180 
184 static inline int getSOImmVal(unsigned Arg)
185 {
186  unsigned RotAmt;
187  // 8-bit (or less) immediates are trivially shifter_operands with a rotate
188  // of zero.
189  if ((Arg & ~255U) == 0) return Arg;
190 
191  RotAmt = getSOImmValRotate(Arg);
192 
193  // If this cannot be handled with a single shifter_op, bail out.
194  if (rotr32(~255U, RotAmt) & Arg)
195  return -1;
196 
197  // Encode this correctly.
198  return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
199 }
200 
203 static inline bool isSOImmTwoPartVal(unsigned V)
204 {
205  // If this can be handled with a single shifter_op, bail out.
206  V = rotr32(~255U, getSOImmValRotate(V)) & V;
207  if (V == 0)
208  return false;
209 
210  // If this can be handled with two shifter_op's, accept.
211  V = rotr32(~255U, getSOImmValRotate(V)) & V;
212  return V == 0;
213 }
214 
217 static inline unsigned getSOImmTwoPartFirst(unsigned V)
218 {
219  return rotr32(255U, getSOImmValRotate(V)) & V;
220 }
221 
224 static inline unsigned getSOImmTwoPartSecond(unsigned V)
225 {
226  // Mask out the first hunk.
227  V = rotr32(~255U, getSOImmValRotate(V)) & V;
228 
229  // Take what's left.
230  //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
231  return V;
232 }
233 
236 static inline unsigned getThumbImmValShift(unsigned Imm)
237 {
238  // 8-bit (or less) immediates are trivially immediate operand with a shift
239  // of zero.
240  if ((Imm & ~255U) == 0) return 0;
241 
242  // Use CTZ to compute the shift amount.
243  return CountTrailingZeros_32(Imm);
244 }
245 
248 static inline bool isThumbImmShiftedVal(unsigned V)
249 {
250  // If this can be handled with
251  V = (~255U << getThumbImmValShift(V)) & V;
252  return V == 0;
253 }
254 
257 static inline unsigned getThumbImm16ValShift(unsigned Imm)
258 {
259  // 16-bit (or less) immediates are trivially immediate operand with a shift
260  // of zero.
261  if ((Imm & ~65535U) == 0) return 0;
262 
263  // Use CTZ to compute the shift amount.
264  return CountTrailingZeros_32(Imm);
265 }
266 
269 static inline bool isThumbImm16ShiftedVal(unsigned V)
270 {
271  // If this can be handled with
272  V = (~65535U << getThumbImm16ValShift(V)) & V;
273  return V == 0;
274 }
275 
278 static inline unsigned getThumbImmNonShiftedVal(unsigned V)
279 {
280  return V >> getThumbImmValShift(V);
281 }
282 
283 
293 static inline int getT2SOImmValSplatVal(unsigned V)
294 {
295  unsigned u, Vs, Imm;
296  // control = 0
297  if ((V & 0xffffff00) == 0)
298  return V;
299 
300  // If the value is zeroes in the first byte, just shift those off
301  Vs = ((V & 0xff) == 0) ? V >> 8 : V;
302  // Any passing value only has 8 bits of payload, splatted across the word
303  Imm = Vs & 0xff;
304  // Likewise, any passing values have the payload splatted into the 3rd byte
305  u = Imm | (Imm << 16);
306 
307  // control = 1 or 2
308  if (Vs == u)
309  return (((Vs == V) ? 1 : 2) << 8) | Imm;
310 
311  // control = 3
312  if (Vs == (u | (u << 8)))
313  return (3 << 8) | Imm;
314 
315  return -1;
316 }
317 
322 static inline int getT2SOImmValRotateVal(unsigned V)
323 {
324  unsigned RotAmt = CountLeadingZeros_32(V);
325  if (RotAmt >= 24)
326  return -1;
327 
328  // If 'Arg' can be handled with a single shifter_op return the value.
329  if ((rotr32(0xff000000U, RotAmt) & V) == V)
330  return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
331 
332  return -1;
333 }
334 
339 static inline int getT2SOImmVal(unsigned Arg)
340 {
341  int Rot;
342  // If 'Arg' is an 8-bit splat, then get the encoded value.
343  int Splat = getT2SOImmValSplatVal(Arg);
344  if (Splat != -1)
345  return Splat;
346 
347  // If 'Arg' can be handled with a single shifter_op return the value.
349  if (Rot != -1)
350  return Rot;
351 
352  return -1;
353 }
354 
355 static inline unsigned getT2SOImmValRotate(unsigned V)
356 {
357  unsigned RotAmt;
358 
359  if ((V & ~255U) == 0)
360  return 0;
361 
362  // Use CTZ to compute the rotate amount.
363  RotAmt = CountTrailingZeros_32(V);
364  return (32 - RotAmt) & 31;
365 }
366 
367 static inline bool isT2SOImmTwoPartVal (unsigned Imm)
368 {
369  unsigned V = Imm;
370  // Passing values can be any combination of splat values and shifter
371  // values. If this can be handled with a single shifter or splat, bail
372  // out. Those should be handled directly, not with a two-part val.
373  if (getT2SOImmValSplatVal(V) != -1)
374  return false;
375  V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
376  if (V == 0)
377  return false;
378 
379  // If this can be handled as an immediate, accept.
380  if (getT2SOImmVal(V) != -1) return true;
381 
382  // Likewise, try masking out a splat value first.
383  V = Imm;
384  if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
385  V &= ~0xff00ff00U;
386  else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
387  V &= ~0x00ff00ffU;
388  // If what's left can be handled as an immediate, accept.
389  if (getT2SOImmVal(V) != -1) return true;
390 
391  // Otherwise, do not accept.
392  return false;
393 }
394 
395 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
396 {
397  //assert (isT2SOImmTwoPartVal(Imm) &&
398  // "Immedate cannot be encoded as two part immediate!");
399  // Try a shifter operand as one part
400  unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
401  // If the rest is encodable as an immediate, then return it.
402  if (getT2SOImmVal(V) != -1) return V;
403 
404  // Try masking out a splat value first.
405  if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
406  return Imm & 0xff00ff00U;
407 
408  // The other splat is all that's left as an option.
409  //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
410  return Imm & 0x00ff00ffU;
411 }
412 
413 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
414 {
415  // Mask out the first hunk
416  Imm ^= getT2SOImmTwoPartFirst(Imm);
417  // Return what's left
418  //assert (getT2SOImmVal(Imm) != -1 &&
419  // "Unable to encode second part of T2 two part SO immediate");
420  return Imm;
421 }
422 
423 
424 //===--------------------------------------------------------------------===//
425 // Addressing Mode #2
426 //===--------------------------------------------------------------------===//
427 //
428 // This is used for most simple load/store instructions.
429 //
430 // addrmode2 := reg +/- reg shop imm
431 // addrmode2 := reg +/- imm12
432 //
433 // The first operand is always a Reg. The second operand is a reg if in
434 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
435 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
436 // fourth operand 16-17 encodes the index mode.
437 //
438 // If this addressing mode is a frame index (before prolog/epilog insertion
439 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
440 // with no shift amount for the frame offset.
441 //
442 static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
443  unsigned IdxMode)
444 {
445  //assert(Imm12 < (1 << 12) && "Imm too large!");
446  bool isSub = Opc == ARM_AM_sub;
447  return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
448 }
449 
450 static inline unsigned getAM2Offset(unsigned AM2Opc)
451 {
452  return AM2Opc & ((1 << 12)-1);
453 }
454 
455 static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
456 {
457  return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
458 }
459 
460 static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
461 {
462  return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
463 }
464 
465 static inline unsigned getAM2IdxMode(unsigned AM2Opc)
466 {
467  return (AM2Opc >> 16);
468 }
469 
470 //===--------------------------------------------------------------------===//
471 // Addressing Mode #3
472 //===--------------------------------------------------------------------===//
473 //
474 // This is used for sign-extending loads, and load/store-pair instructions.
475 //
476 // addrmode3 := reg +/- reg
477 // addrmode3 := reg +/- imm8
478 //
479 // The first operand is always a Reg. The second operand is a reg if in
480 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
481 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
482 // index mode.
483 
485 static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
486  unsigned IdxMode)
487 {
488  bool isSub = Opc == ARM_AM_sub;
489  return ((int)isSub << 8) | Offset | (IdxMode << 9);
490 }
491 
492 static inline unsigned char getAM3Offset(unsigned AM3Opc)
493 {
494  return AM3Opc & 0xFF;
495 }
496 
497 static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
498 {
499  return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
500 }
501 
502 static inline unsigned getAM3IdxMode(unsigned AM3Opc)
503 {
504  return (AM3Opc >> 9);
505 }
506 
507 //===--------------------------------------------------------------------===//
508 // Addressing Mode #4
509 //===--------------------------------------------------------------------===//
510 //
511 // This is used for load / store multiple instructions.
512 //
513 // addrmode4 := reg, <mode>
514 //
515 // The four modes are:
516 // IA - Increment after
517 // IB - Increment before
518 // DA - Decrement after
519 // DB - Decrement before
520 // For VFP instructions, only the IA and DB modes are valid.
521 
522 static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
523 {
524  return (ARM_AM_AMSubMode)(Mode & 0x7);
525 }
526 
527 static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
528 {
529  return (int)SubMode;
530 }
531 
532 //===--------------------------------------------------------------------===//
533 // Addressing Mode #5
534 //===--------------------------------------------------------------------===//
535 //
536 // This is used for coprocessor instructions, such as FP load/stores.
537 //
538 // addrmode5 := reg +/- imm8*4
539 //
540 // The first operand is always a Reg. The second operand encodes the
541 // operation in bit 8 and the immediate in bits 0-7.
542 
544 static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
545 {
546  bool isSub = Opc == ARM_AM_sub;
547  return ((int)isSub << 8) | Offset;
548 }
549 static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
550 {
551  return AM5Opc & 0xFF;
552 }
553 static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
554 {
555  return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
556 }
557 
558 //===--------------------------------------------------------------------===//
559 // Addressing Mode #6
560 //===--------------------------------------------------------------------===//
561 //
562 // This is used for NEON load / store instructions.
563 //
564 // addrmode6 := reg with optional alignment
565 //
566 // This is stored in two operands [regaddr, align]. The first is the
567 // address register. The second operand is the value of the alignment
568 // specifier in bytes or zero if no explicit alignment.
569 // Valid alignments depend on the specific instruction.
570 
571 //===--------------------------------------------------------------------===//
572 // NEON Modified Immediates
573 //===--------------------------------------------------------------------===//
574 //
575 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
576 // vector operand, where a small immediate encoded in the instruction
577 // specifies a full NEON vector value. These modified immediates are
578 // represented here as encoded integers. The low 8 bits hold the immediate
579 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
580 // the "Cmode" field of the instruction. The interfaces below treat the
581 // Op and Cmode values as a single 5-bit value.
582 
583 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
584 {
585  return (OpCmode << 8) | Val;
586 }
587 static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
588 {
589  return (ModImm >> 8) & 0x1f;
590 }
591 static inline unsigned getNEONModImmVal(unsigned ModImm)
592 {
593  return ModImm & 0xff;
594 }
595 
599 static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
600 {
601  unsigned OpCmode = getNEONModImmOpCmode(ModImm);
602  unsigned Imm8 = getNEONModImmVal(ModImm);
603  uint64_t Val = 0;
604  unsigned ByteNum;
605 
606  if (OpCmode == 0xe) {
607  // 8-bit vector elements
608  Val = Imm8;
609  *EltBits = 8;
610  } else if ((OpCmode & 0xc) == 0x8) {
611  // 16-bit vector elements
612  ByteNum = (OpCmode & 0x6) >> 1;
613  Val = (uint64_t)Imm8 << (8 * ByteNum);
614  *EltBits = 16;
615  } else if ((OpCmode & 0x8) == 0) {
616  // 32-bit vector elements, zero with one byte set
617  ByteNum = (OpCmode & 0x6) >> 1;
618  Val = (uint64_t)Imm8 << (8 * ByteNum);
619  *EltBits = 32;
620  } else if ((OpCmode & 0xe) == 0xc) {
621  // 32-bit vector elements, one byte with low bits set
622  ByteNum = 1 + (OpCmode & 0x1);
623  Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
624  *EltBits = 32;
625  } else if (OpCmode == 0x1e) {
626  // 64-bit vector elements
627  for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
628  if ((ModImm >> ByteNum) & 1)
629  Val |= (uint64_t)0xff << (8 * ByteNum);
630  }
631  *EltBits = 64;
632  } else {
633  //llvm_unreachable("Unsupported NEON immediate");
634  }
635  return Val;
636 }
637 
639 
640 //===--------------------------------------------------------------------===//
641 // Floating-point Immediates
642 //
643 static inline float getFPImmFloat(unsigned Imm)
644 {
645  // We expect an 8-bit binary encoding of a floating-point number here.
646  union {
647  uint32_t I;
648  float F;
649  } FPUnion;
650 
651  uint8_t Sign = (Imm >> 7) & 0x1;
652  uint8_t Exp = (Imm >> 4) & 0x7;
653  uint8_t Mantissa = Imm & 0xf;
654 
655  // 8-bit FP iEEEE Float Encoding
656  // abcd efgh aBbbbbbc defgh000 00000000 00000000
657  //
658  // where B = NOT(b);
659 
660  FPUnion.I = 0;
661  FPUnion.I |= ((uint32_t) Sign) << 31;
662  FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
663  FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
664  FPUnion.I |= (Exp & 0x3) << 23;
665  FPUnion.I |= Mantissa << 19;
666  return FPUnion.F;
667 }
668 
669 #endif
670 
getT2SOImmTwoPartFirst
static unsigned getT2SOImmTwoPartFirst(unsigned Imm)
Definition: ARMAddressingModes.h:395
ARM_AM_ib
@ ARM_AM_ib
Definition: ARMAddressingModes.h:69
getSOImmValRot
static unsigned getSOImmValRot(unsigned Imm)
Definition: ARMAddressingModes.h:139
ARM_AM_decodeNEONModImm
static uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
Definition: ARMAddressingModes.h:599
ARM_AM_getAM2Opc
static unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO, unsigned IdxMode)
Definition: ARMAddressingModes.h:442
ARM_AM_getAddrOpcStr
static const char * ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
Definition: ARMAddressingModes.h:38
ARM_AM_rrx
@ ARM_AM_rrx
Definition: ARMAddressingModes.h:30
ARM_AM_ShiftOpc
ARM_AM_ShiftOpc
ARM_AM - ARM Addressing Mode Stuff.
Definition: ARMAddressingModes.h:24
ARM_AM_bad_am_submode
@ ARM_AM_bad_am_submode
Definition: ARMAddressingModes.h:67
createNEONModImm
static unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
Definition: ARMAddressingModes.h:583
ARM_AM_getSORegShOp
static ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
Definition: ARMAddressingModes.h:125
u
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:351
getNEONModImmVal
static unsigned getNEONModImmVal(unsigned ModImm)
Definition: ARMAddressingModes.h:591
getAM4SubMode
static ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
Definition: ARMAddressingModes.h:522
getT2SOImmValRotate
static unsigned getT2SOImmValRotate(unsigned V)
Definition: ARMAddressingModes.h:355
getAM3Opc
static unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset, unsigned IdxMode)
getAM3Opc - This function encodes the addrmode3 opc field.
Definition: ARMAddressingModes.h:485
Arg
Arg(64) -> Arg(128) ->Arg(256) ->Arg(512) ->Arg(1024) ->Arg(1536) ->Arg(2048) ->Arg(3072) ->Arg(4096) ->Arg(5120) ->Arg(6144) ->Arg(7168)
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
isT2SOImmTwoPartVal
static bool isT2SOImmTwoPartVal(unsigned Imm)
Definition: ARMAddressingModes.h:367
ARM_AM_AMSubMode
ARM_AM_AMSubMode
Definition: ARMAddressingModes.h:66
ARM_AM_asr
@ ARM_AM_asr
Definition: ARMAddressingModes.h:26
isSOImmTwoPartVal
static bool isSOImmTwoPartVal(unsigned V)
Definition: ARMAddressingModes.h:203
uint32_t
unsigned int uint32_t
Definition: stdint-msvc2008.h:80
getThumbImmNonShiftedVal
static unsigned getThumbImmNonShiftedVal(unsigned V)
Definition: ARMAddressingModes.h:278
xds_interop_client.int
int
Definition: xds_interop_client.py:113
getSOImmValRotate
static unsigned getSOImmValRotate(unsigned Imm)
Definition: ARMAddressingModes.h:148
getAM4ModeImm
static unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
Definition: ARMAddressingModes.h:527
getT2SOImmValSplatVal
static int getT2SOImmValSplatVal(unsigned V)
Definition: ARMAddressingModes.h:293
getAM2Offset
static unsigned getAM2Offset(unsigned AM2Opc)
Definition: ARMAddressingModes.h:450
ARM_AM_lsr
@ ARM_AM_lsr
Definition: ARMAddressingModes.h:28
getT2SOImmTwoPartSecond
static unsigned getT2SOImmTwoPartSecond(unsigned Imm)
Definition: ARMAddressingModes.h:413
getSOImmValImm
static unsigned getSOImmValImm(unsigned Imm)
Definition: ARMAddressingModes.h:132
ARM_AM_db
@ ARM_AM_db
Definition: ARMAddressingModes.h:71
platform.h
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
getAM2ShiftOpc
static ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
Definition: ARMAddressingModes.h:460
ARM_AM_getShiftOpcEncoding
static unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
Definition: ARMAddressingModes.h:55
getSORegOpc
static unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
Definition: ARMAddressingModes.h:115
ARM_AM_getShiftOpcStr
static const char * ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
Definition: ARMAddressingModes.h:43
getSOImmTwoPartFirst
static unsigned getSOImmTwoPartFirst(unsigned V)
Definition: ARMAddressingModes.h:217
getSOImmVal
static int getSOImmVal(unsigned Arg)
Definition: ARMAddressingModes.h:184
ARM_AM_da
@ ARM_AM_da
Definition: ARMAddressingModes.h:70
getAM2IdxMode
static unsigned getAM2IdxMode(unsigned AM2Opc)
Definition: ARMAddressingModes.h:465
getFPImmFloat
static float getFPImmFloat(unsigned Imm)
Definition: ARMAddressingModes.h:643
F
#define F(b, c, d)
Definition: md4.c:112
ARM_AM_AddrOpc
ARM_AM_AddrOpc
Definition: ARMAddressingModes.h:33
getT2SOImmVal
static int getT2SOImmVal(unsigned Arg)
Definition: ARMAddressingModes.h:339
getAM2Op
static ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
Definition: ARMAddressingModes.h:455
getNEONModImmOpCmode
static unsigned getNEONModImmOpCmode(unsigned ModImm)
Definition: ARMAddressingModes.h:587
getSORegOffset
static unsigned getSORegOffset(unsigned Op)
Definition: ARMAddressingModes.h:120
ARM_AM_no_shift
@ ARM_AM_no_shift
Definition: ARMAddressingModes.h:25
I
#define I(b, c, d)
Definition: md5.c:120
getSOImmTwoPartSecond
static unsigned getSOImmTwoPartSecond(unsigned V)
Definition: ARMAddressingModes.h:224
getT2SOImmValRotateVal
static int getT2SOImmValRotateVal(unsigned V)
Definition: ARMAddressingModes.h:322
CountTrailingZeros_32
static unsigned CountTrailingZeros_32(uint32_t Value)
Definition: MathExtras.h:190
getThumbImmValShift
static unsigned getThumbImmValShift(unsigned Imm)
Definition: ARMAddressingModes.h:236
isThumbImmShiftedVal
static bool isThumbImmShiftedVal(unsigned V)
Definition: ARMAddressingModes.h:248
Sign
bool Sign(const std::vector< std::string > &args)
Definition: sign.cc:31
CountLeadingZeros_32
static unsigned CountLeadingZeros_32(uint32_t Value)
Definition: MathExtras.h:95
rotr32
static unsigned rotr32(unsigned Val, unsigned Amt)
Definition: ARMAddressingModes.h:87
ARM_AM_getAMSubModeStr
static const char * ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
Definition: ARMAddressingModes.h:74
getAM3Offset
static unsigned char getAM3Offset(unsigned AM3Opc)
Definition: ARMAddressingModes.h:492
ARM_AM_ror
@ ARM_AM_ror
Definition: ARMAddressingModes.h:29
ARM_AM_getAM5Op
static ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
Definition: ARMAddressingModes.h:553
getLoadStoreMultipleSubMode
ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode)
getAM3Op
static ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
Definition: ARMAddressingModes.h:497
isThumbImm16ShiftedVal
static bool isThumbImm16ShiftedVal(unsigned V)
Definition: ARMAddressingModes.h:269
ARM_AM_add
@ ARM_AM_add
Definition: ARMAddressingModes.h:35
ARM_AM_sub
@ ARM_AM_sub
Definition: ARMAddressingModes.h:34
ARM_AM_getAM5Offset
static unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
Definition: ARMAddressingModes.h:549
getAM3IdxMode
static unsigned getAM3IdxMode(unsigned AM3Opc)
Definition: ARMAddressingModes.h:502
rotl32
static unsigned rotl32(unsigned Val, unsigned Amt)
Definition: ARMAddressingModes.h:95
ARM_AM_ia
@ ARM_AM_ia
Definition: ARMAddressingModes.h:68
getThumbImm16ValShift
static unsigned getThumbImm16ValShift(unsigned Imm)
Definition: ARMAddressingModes.h:257
ARM_AM_getAM5Opc
static unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
getAM5Opc - This function encodes the addrmode5 opc field.
Definition: ARMAddressingModes.h:544
ARM_AM_lsl
@ ARM_AM_lsl
Definition: ARMAddressingModes.h:27


grpc
Author(s):
autogenerated on Thu Mar 13 2025 02:58:33