Public Member Functions | Protected Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
exotica::BayesianIKSolver Class Reference

Solves motion planning problem using Approximate Inference Control method. More...

#include <bayesian_ik_solver.h>

Inheritance diagram for exotica::BayesianIKSolver:
Inheritance graph
[legend]

Public Member Functions

void Instantiate (const BayesianIKSolverInitializer &init) override
 
void Solve (Eigen::MatrixXd &solution) override
 Solves the problem. More...
 
void SpecifyProblem (PlanningProblemPtr pointer) override
 Binds the solver to a specific problem which must be pre-initalised. More...
 
- Public Member Functions inherited from exotica::MotionSolver
int GetNumberOfMaxIterations ()
 
double GetPlanningTime ()
 
PlanningProblemPtr GetProblem () const
 
void InstantiateBase (const Initializer &init) override
 
 MotionSolver ()=default
 
std::string Print (const std::string &prepend) const override
 
void SetNumberOfMaxIterations (int max_iter)
 
virtual ~MotionSolver ()=default
 
- Public Member Functions inherited from exotica::Object
std::string GetObjectName ()
 
void InstantiateObject (const Initializer &init)
 
 Object ()
 
virtual std::string type () const
 
virtual ~Object ()
 
- Public Member Functions inherited from exotica::InstantiableBase
virtual std::vector< InitializerGetAllTemplates () const=0
 
 InstantiableBase ()=default
 
virtual ~InstantiableBase ()=default
 
- Public Member Functions inherited from exotica::Instantiable< BayesianIKSolverInitializer >
std::vector< InitializerGetAllTemplates () const override
 
Initializer GetInitializerTemplate () override
 
const C & GetParameters () const
 
virtual void Instantiate (const C &init)
 
void InstantiateInternal (const Initializer &init) override
 

Protected Member Functions

void InitMessages ()
 Initializes message data. More...
 
void InitTrajectory (const Eigen::VectorXd &q_init)
 Initialise AICO messages from an initial trajectory. More...
 

Private Types

enum  SweepMode { FORWARD = 0, SYMMETRIC, LOCAL_GAUSS_NEWTON, LOCAL_GAUSS_NEWTON_DAMPED }
 

Private Member Functions

double EvaluateTrajectory (const Eigen::VectorXd &x, bool skip_update=false)
 Computes the cost of the trajectory. More...
 
void GetTaskCosts ()
 Updates the task cost terms $ R, r, \hat{r} $. UnconstrainedEndPoseProblem::Update() has to be called before calling this function. More...
 
void PerhapsUndoStep ()
 Reverts back to previous state if the cost of the current state is higher. More...
 
void RememberOldState ()
 Stores the previous state. More...
 
double Step ()
 Compute one step of the AICO algorithm. More...
 
void UpdateBwdMessage ()
 Updates the backward message Updates the mean and covariance of the backward message using: $ \mu_{x_{t+1}\rightarrow x_t}(x)=\mathcal{N}(x_t|v_t,V_t) $ , where $ v_t=-A_{t}^{-1}a_{t}\!\!+\!\!A_{t}^{-1}(V_{t+1}^{-1}\!\!+\!\!R_{t+1})^{-1}(V_{t+1}^{-1}v_{t+1}\!\!+\!\!r_{t+1}) $ and $ V_t=A_{t}^{-1}[Q+B_tH^{-1}B_t^{\!\top\!} + (V_{t+1}^{-1}+R_{t+1})^{-1}]A_{t}^{-{\!\top\!}} $. More...
 
void UpdateFwdMessage ()
 Updates the forward message Updates the mean and covariance of the forward message using: $ \mu_{x_{t-1}\rightarrow x_t}(x)=\mathcal{N}(x_t|s_t,S_t) $ , where $ s_t=a_{t-1}\!+\!A_{t-1}(S_{t-1}^{-1}\!+\!R_{t-1})^{-1}(S_{t-1}^{-1}s_{t-1}\!+\!r_{t-1}) $ and $ S_t=Q+B_tH^{-1}B_t^{\!\top\!} + A_{t-1}(S_{t-1}^{-1}+R_{t-1})^{-1}A_{t-1}^{\!\top\!} $. More...
 
void UpdateTaskMessage (const Eigen::Ref< const Eigen::VectorXd > &qhat_t, double tolerance, double max_step_size=-1.)
 Updates the task message. More...
 
void UpdateTimestep (bool update_fwd, bool update_bwd, int max_relocation_iterations, double tolerance, bool force_relocation, double max_step_size=-1.)
 Update messages for given time step. More...
 
void UpdateTimestepGaussNewton (bool update_fwd, bool update_bwd, int max_relocation_iterations, double tolerance, double max_step_size=-1.)
 Update messages for given time step using the Gauss Newton method. More...
 

Private Attributes

Eigen::VectorXd b
 Belief mean. More...
 
Eigen::VectorXd b_old
 Belief mean (last most optimal value) More...
 
double b_step_ = 0.0
 Squared configuration space step. More...
 
double b_step_old_
 
int best_sweep_ = 0
 
int best_sweep_old_ = 0
 
Eigen::MatrixXd Binv
 Belief covariance inverse. More...
 
Eigen::MatrixXd Binv_old
 Belief covariance inverse (last most optimal value) More...
 
Eigen::VectorXd bwd_msg_v_
 Backward message initialisation mean. More...
 
Eigen::MatrixXd bwd_msg_Vinv_
 Backward message initialisation covariance. More...
 
double cost_ = 0.0
 cost of MAP trajectory More...
 
double cost_old_ = std::numeric_limits<double>::max()
 cost of MAP trajectory (last most optimal value) More...
 
double cost_prev_ = std::numeric_limits<double>::max()
 previous iteration cost More...
 
double damping = 0.01
 Damping. More...
 
double damping_init_ = 100.0
 Damping. More...
 
Eigen::VectorXd damping_reference_
 Damping reference point. More...
 
double function_tolerance_ = 1e-5
 Relative function tolerance/first-order optimality criterion. More...
 
int iteration_count_
 Iteration counter. More...
 
int max_backtrack_iterations_ = 10
 Max. number of sweeps without improvement before terminating (= line-search) More...
 
double minimum_step_tolerance_ = 1e-5
 Update tolerance to stop update of messages if change of maximum coefficient is less than this tolerance. More...
 
UnconstrainedEndPoseProblemPtr prob_
 Shared pointer to the planning problem. More...
 
Eigen::VectorXd q
 Configuration space trajectory. More...
 
Eigen::VectorXd q_old
 Configuration space trajectory (last most optimal value) More...
 
Eigen::VectorXd qhat
 Point of linearisation. More...
 
Eigen::VectorXd qhat_old
 Point of linearisation (last most optimal value) More...
 
Eigen::VectorXd r
 Task message mean. More...
 
Eigen::MatrixXd R
 Task message covariance. More...
 
Eigen::VectorXd r_old
 Task message mean (last most optimal value) More...
 
Eigen::MatrixXd R_old
 Task message covariance (last most optimal value) More...
 
double rhat
 Task message point of linearisation. More...
 
double rhat_old
 Task message point of linearisation (last most optimal value) More...
 
Eigen::VectorXd s
 Forward message mean. More...
 
Eigen::VectorXd s_old
 Forward message mean (last most optimal value) More...
 
Eigen::MatrixXd Sinv
 Forward message covariance inverse. More...
 
Eigen::MatrixXd Sinv_old
 Forward message covariance inverse (last most optimal value) More...
 
double step_tolerance_ = 1e-5
 Relative step tolerance (termination criterion) More...
 
int sweep_ = 0
 Sweeps so far. More...
 
bool sweep_improved_cost_
 Whether the last sweep improved the cost (for backtrack iterations count) More...
 
int sweep_mode_ = 0
 Sweep mode. More...
 
int update_count_ = 0
 
bool use_bwd_msg_ = false
 Flag for using backward message initialisation. More...
 
Eigen::VectorXd v
 Backward message mean. More...
 
Eigen::VectorXd v_old
 Backward message mean (last most optimal value) More...
 
bool verbose_ = false
 
Eigen::MatrixXd Vinv
 Backward message covariance inverse. More...
 
Eigen::MatrixXd Vinv_old
 Backward message covariance inverse (last most optimal value) More...
 
Eigen::MatrixXd W
 Configuration space weight matrix inverse. More...
 
Eigen::MatrixXd Winv
 Configuration space weight matrix inverse. More...
 

Additional Inherited Members

- Public Attributes inherited from exotica::Object
bool debug_
 
std::string ns_
 
std::string object_name_
 
- Protected Attributes inherited from exotica::MotionSolver
int max_iterations_
 
double planning_time_
 
PlanningProblemPtr problem_
 
- Protected Attributes inherited from exotica::Instantiable< BayesianIKSolverInitializer >
parameters_
 

Detailed Description

Solves motion planning problem using Approximate Inference Control method.

Definition at line 47 of file bayesian_ik_solver.h.

Member Enumeration Documentation

◆ SweepMode

Enumerator
FORWARD 
SYMMETRIC 
LOCAL_GAUSS_NEWTON 
LOCAL_GAUSS_NEWTON_DAMPED 

Definition at line 123 of file bayesian_ik_solver.h.

Member Function Documentation

◆ EvaluateTrajectory()

double exotica::BayesianIKSolver::EvaluateTrajectory ( const Eigen::VectorXd x,
bool  skip_update = false 
)
private

Computes the cost of the trajectory.

Parameters
xTrajecotry.
Returns
Cost of the trajectory.

Definition at line 348 of file bayesian_ik_solver.cpp.

◆ GetTaskCosts()

void exotica::BayesianIKSolver::GetTaskCosts ( )
private

Updates the task cost terms $ R, r, \hat{r} $. UnconstrainedEndPoseProblem::Update() has to be called before calling this function.

Definition at line 277 of file bayesian_ik_solver.cpp.

◆ InitMessages()

void exotica::BayesianIKSolver::InitMessages ( )
protected

Initializes message data.

Parameters
q0Start configuration
Returns
Indicates success

Definition at line 168 of file bayesian_ik_solver.cpp.

◆ InitTrajectory()

void exotica::BayesianIKSolver::InitTrajectory ( const Eigen::VectorXd q_init)
protected

Initialise AICO messages from an initial trajectory.

Parameters
q_initInitial trajectory
Returns
Indicates success

Definition at line 197 of file bayesian_ik_solver.cpp.

◆ Instantiate()

void exotica::BayesianIKSolver::Instantiate ( const BayesianIKSolverInitializer &  init)
override

Definition at line 42 of file bayesian_ik_solver.cpp.

◆ PerhapsUndoStep()

void exotica::BayesianIKSolver::PerhapsUndoStep ( )
private

Reverts back to previous state if the cost of the current state is higher.

Definition at line 433 of file bayesian_ik_solver.cpp.

◆ RememberOldState()

void exotica::BayesianIKSolver::RememberOldState ( )
private

Stores the previous state.

Definition at line 413 of file bayesian_ik_solver.cpp.

◆ Solve()

void exotica::BayesianIKSolver::Solve ( Eigen::MatrixXd &  solution)
overridevirtual

Solves the problem.

Parameters
solutionReturned end pose solution.

Implements exotica::MotionSolver.

Definition at line 79 of file bayesian_ik_solver.cpp.

◆ SpecifyProblem()

void exotica::BayesianIKSolver::SpecifyProblem ( PlanningProblemPtr  pointer)
overridevirtual

Binds the solver to a specific problem which must be pre-initalised.

Parameters
pointerShared pointer to the motion planning problem
Returns
Successful if the problem is a valid UnconstrainedEndPoseProblem

Reimplemented from exotica::MotionSolver.

Definition at line 67 of file bayesian_ik_solver.cpp.

◆ Step()

double exotica::BayesianIKSolver::Step ( )
private

Compute one step of the AICO algorithm.

Returns
Change in cost of the trajectory.

Definition at line 364 of file bayesian_ik_solver.cpp.

◆ UpdateBwdMessage()

void exotica::BayesianIKSolver::UpdateBwdMessage ( )
private

Updates the backward message Updates the mean and covariance of the backward message using: $ \mu_{x_{t+1}\rightarrow x_t}(x)=\mathcal{N}(x_t|v_t,V_t) $ , where $ v_t=-A_{t}^{-1}a_{t}\!\!+\!\!A_{t}^{-1}(V_{t+1}^{-1}\!\!+\!\!R_{t+1})^{-1}(V_{t+1}^{-1}v_{t+1}\!\!+\!\!r_{t+1}) $ and $ V_t=A_{t}^{-1}[Q+B_tH^{-1}B_t^{\!\top\!} + (V_{t+1}^{-1}+R_{t+1})^{-1}]A_{t}^{-{\!\top\!}} $.

Definition at line 240 of file bayesian_ik_solver.cpp.

◆ UpdateFwdMessage()

void exotica::BayesianIKSolver::UpdateFwdMessage ( )
private

Updates the forward message Updates the mean and covariance of the forward message using: $ \mu_{x_{t-1}\rightarrow x_t}(x)=\mathcal{N}(x_t|s_t,S_t) $ , where $ s_t=a_{t-1}\!+\!A_{t-1}(S_{t-1}^{-1}\!+\!R_{t-1})^{-1}(S_{t-1}^{-1}s_{t-1}\!+\!r_{t-1}) $ and $ S_t=Q+B_tH^{-1}B_t^{\!\top\!} + A_{t-1}(S_{t-1}^{-1}+R_{t-1})^{-1}A_{t-1}^{\!\top\!} $.

Definition at line 231 of file bayesian_ik_solver.cpp.

◆ UpdateTaskMessage()

void exotica::BayesianIKSolver::UpdateTaskMessage ( const Eigen::Ref< const Eigen::VectorXd > &  qhat_t,
double  tolerance,
double  max_step_size = -1. 
)
private

Updates the task message.

Parameters
qhat_tPoint of linearisation at time step $t$
toleranceLazy update tolerance (only update the task message if the state changed more than this value)
max_step_sizeIf step size >0, cap the motion at this step to the step size. Updates the mean and covariance of the task message using: $ \mu_{z_t\rightarrow x_t}(x)=\mathcal{N}[x_t|r_t,R_t] $

Definition at line 256 of file bayesian_ik_solver.cpp.

◆ UpdateTimestep()

void exotica::BayesianIKSolver::UpdateTimestep ( bool  update_fwd,
bool  update_bwd,
int  max_relocation_iterations,
double  tolerance,
bool  force_relocation,
double  max_step_size = -1. 
)
private

Update messages for given time step.

Parameters
tTime step.
update_fwdUpdate the forward message.
update_bwdUpdate the backward message.
max_relocation_iterationsMaximum number of relocation while searching for a good linearisation point
toleranceTolerance for for stopping the search.
force_relocationSet to true to force relocation even when the result is within tolerance.
max_step_sizeStep size for UpdateTaskMessage.

Definition at line 299 of file bayesian_ik_solver.cpp.

◆ UpdateTimestepGaussNewton()

void exotica::BayesianIKSolver::UpdateTimestepGaussNewton ( bool  update_fwd,
bool  update_bwd,
int  max_relocation_iterations,
double  tolerance,
double  max_step_size = -1. 
)
private

Update messages for given time step using the Gauss Newton method.

Parameters
tTime step.
update_fwdUpdate the forward message.
update_bwdUpdate the backward message.
max_relocation_iterationsMaximum number of relocation while searching for a good linearisation point
toleranceTolerance for for stopping the search.
max_step_sizeStep size for UpdateTaskMessage. First, the messages $ \mu_{x_{t-1}\rightarrow x_t}(x)=\mathcal{N}(x_t|s_t,S_t) $, $ \mu_{x_{t+1}\rightarrow x_t}(x)=\mathcal{N}(x_t|v_t,V_t) $ and $ \mu_{z_t\rightarrow x_t}(x)=\mathcal{N}[x_t|r_t,R_t] $ are computed. Then, the belief is updated: $ b_t(X_t)=\mu_{x_{t-1}\rightarrow x_t}(x) \mu_{x_{t+1}\rightarrow x_t}(x) \mu_{z_t\rightarrow x_t}(x) $ where the mean and covariance are updated as follows: $ b_t(X_t)=\mathcal{N}\left(x_t|(S_t^{-1}+V_t^{-1}+R_t)^{-1}(S_t^{-1}s_t+V_t^{-1}v_t+r_t),S_t^{-1}+V_t^{-1}+R_t \right) $.

Definition at line 340 of file bayesian_ik_solver.cpp.

Member Data Documentation

◆ b

Eigen::VectorXd exotica::BayesianIKSolver::b
private

Belief mean.

Definition at line 93 of file bayesian_ik_solver.h.

◆ b_old

Eigen::VectorXd exotica::BayesianIKSolver::b_old
private

Belief mean (last most optimal value)

Definition at line 105 of file bayesian_ik_solver.h.

◆ b_step_

double exotica::BayesianIKSolver::b_step_ = 0.0
private

Squared configuration space step.

Definition at line 114 of file bayesian_ik_solver.h.

◆ b_step_old_

double exotica::BayesianIKSolver::b_step_old_
private

Definition at line 115 of file bayesian_ik_solver.h.

◆ best_sweep_

int exotica::BayesianIKSolver::best_sweep_ = 0
private

Definition at line 121 of file bayesian_ik_solver.h.

◆ best_sweep_old_

int exotica::BayesianIKSolver::best_sweep_old_ = 0
private

Definition at line 122 of file bayesian_ik_solver.h.

◆ Binv

Eigen::MatrixXd exotica::BayesianIKSolver::Binv
private

Belief covariance inverse.

Definition at line 94 of file bayesian_ik_solver.h.

◆ Binv_old

Eigen::MatrixXd exotica::BayesianIKSolver::Binv_old
private

Belief covariance inverse (last most optimal value)

Definition at line 106 of file bayesian_ik_solver.h.

◆ bwd_msg_v_

Eigen::VectorXd exotica::BayesianIKSolver::bwd_msg_v_
private

Backward message initialisation mean.

Definition at line 81 of file bayesian_ik_solver.h.

◆ bwd_msg_Vinv_

Eigen::MatrixXd exotica::BayesianIKSolver::bwd_msg_Vinv_
private

Backward message initialisation covariance.

Definition at line 82 of file bayesian_ik_solver.h.

◆ cost_

double exotica::BayesianIKSolver::cost_ = 0.0
private

cost of MAP trajectory

Definition at line 111 of file bayesian_ik_solver.h.

◆ cost_old_

double exotica::BayesianIKSolver::cost_old_ = std::numeric_limits<double>::max()
private

cost of MAP trajectory (last most optimal value)

Definition at line 112 of file bayesian_ik_solver.h.

◆ cost_prev_

double exotica::BayesianIKSolver::cost_prev_ = std::numeric_limits<double>::max()
private

previous iteration cost

Definition at line 113 of file bayesian_ik_solver.h.

◆ damping

double exotica::BayesianIKSolver::damping = 0.01
private

Damping.

Definition at line 74 of file bayesian_ik_solver.h.

◆ damping_init_

double exotica::BayesianIKSolver::damping_init_ = 100.0
private

Damping.

Definition at line 75 of file bayesian_ik_solver.h.

◆ damping_reference_

Eigen::VectorXd exotica::BayesianIKSolver::damping_reference_
private

Damping reference point.

Definition at line 110 of file bayesian_ik_solver.h.

◆ function_tolerance_

double exotica::BayesianIKSolver::function_tolerance_ = 1e-5
private

Relative function tolerance/first-order optimality criterion.

Definition at line 78 of file bayesian_ik_solver.h.

◆ iteration_count_

int exotica::BayesianIKSolver::iteration_count_
private

Iteration counter.

Definition at line 84 of file bayesian_ik_solver.h.

◆ max_backtrack_iterations_

int exotica::BayesianIKSolver::max_backtrack_iterations_ = 10
private

Max. number of sweeps without improvement before terminating (= line-search)

Definition at line 79 of file bayesian_ik_solver.h.

◆ minimum_step_tolerance_

double exotica::BayesianIKSolver::minimum_step_tolerance_ = 1e-5
private

Update tolerance to stop update of messages if change of maximum coefficient is less than this tolerance.

Definition at line 76 of file bayesian_ik_solver.h.

◆ prob_

UnconstrainedEndPoseProblemPtr exotica::BayesianIKSolver::prob_
private

Shared pointer to the planning problem.

Definition at line 73 of file bayesian_ik_solver.h.

◆ q

Eigen::VectorXd exotica::BayesianIKSolver::q
private

Configuration space trajectory.

Definition at line 95 of file bayesian_ik_solver.h.

◆ q_old

Eigen::VectorXd exotica::BayesianIKSolver::q_old
private

Configuration space trajectory (last most optimal value)

Definition at line 107 of file bayesian_ik_solver.h.

◆ qhat

Eigen::VectorXd exotica::BayesianIKSolver::qhat
private

Point of linearisation.

Definition at line 96 of file bayesian_ik_solver.h.

◆ qhat_old

Eigen::VectorXd exotica::BayesianIKSolver::qhat_old
private

Point of linearisation (last most optimal value)

Definition at line 108 of file bayesian_ik_solver.h.

◆ r

Eigen::VectorXd exotica::BayesianIKSolver::r
private

Task message mean.

Definition at line 90 of file bayesian_ik_solver.h.

◆ R

Eigen::MatrixXd exotica::BayesianIKSolver::R
private

Task message covariance.

Definition at line 91 of file bayesian_ik_solver.h.

◆ r_old

Eigen::VectorXd exotica::BayesianIKSolver::r_old
private

Task message mean (last most optimal value)

Definition at line 102 of file bayesian_ik_solver.h.

◆ R_old

Eigen::MatrixXd exotica::BayesianIKSolver::R_old
private

Task message covariance (last most optimal value)

Definition at line 103 of file bayesian_ik_solver.h.

◆ rhat

double exotica::BayesianIKSolver::rhat
private

Task message point of linearisation.

Definition at line 92 of file bayesian_ik_solver.h.

◆ rhat_old

double exotica::BayesianIKSolver::rhat_old
private

Task message point of linearisation (last most optimal value)

Definition at line 104 of file bayesian_ik_solver.h.

◆ s

Eigen::VectorXd exotica::BayesianIKSolver::s
private

Forward message mean.

Definition at line 86 of file bayesian_ik_solver.h.

◆ s_old

Eigen::VectorXd exotica::BayesianIKSolver::s_old
private

Forward message mean (last most optimal value)

Definition at line 98 of file bayesian_ik_solver.h.

◆ Sinv

Eigen::MatrixXd exotica::BayesianIKSolver::Sinv
private

Forward message covariance inverse.

Definition at line 87 of file bayesian_ik_solver.h.

◆ Sinv_old

Eigen::MatrixXd exotica::BayesianIKSolver::Sinv_old
private

Forward message covariance inverse (last most optimal value)

Definition at line 99 of file bayesian_ik_solver.h.

◆ step_tolerance_

double exotica::BayesianIKSolver::step_tolerance_ = 1e-5
private

Relative step tolerance (termination criterion)

Definition at line 77 of file bayesian_ik_solver.h.

◆ sweep_

int exotica::BayesianIKSolver::sweep_ = 0
private

Sweeps so far.

Definition at line 120 of file bayesian_ik_solver.h.

◆ sweep_improved_cost_

bool exotica::BayesianIKSolver::sweep_improved_cost_
private

Whether the last sweep improved the cost (for backtrack iterations count)

Definition at line 83 of file bayesian_ik_solver.h.

◆ sweep_mode_

int exotica::BayesianIKSolver::sweep_mode_ = 0
private

Sweep mode.

Definition at line 130 of file bayesian_ik_solver.h.

◆ update_count_

int exotica::BayesianIKSolver::update_count_ = 0
private

Definition at line 131 of file bayesian_ik_solver.h.

◆ use_bwd_msg_

bool exotica::BayesianIKSolver::use_bwd_msg_ = false
private

Flag for using backward message initialisation.

Definition at line 80 of file bayesian_ik_solver.h.

◆ v

Eigen::VectorXd exotica::BayesianIKSolver::v
private

Backward message mean.

Definition at line 88 of file bayesian_ik_solver.h.

◆ v_old

Eigen::VectorXd exotica::BayesianIKSolver::v_old
private

Backward message mean (last most optimal value)

Definition at line 100 of file bayesian_ik_solver.h.

◆ verbose_

bool exotica::BayesianIKSolver::verbose_ = false
private

Definition at line 133 of file bayesian_ik_solver.h.

◆ Vinv

Eigen::MatrixXd exotica::BayesianIKSolver::Vinv
private

Backward message covariance inverse.

Definition at line 89 of file bayesian_ik_solver.h.

◆ Vinv_old

Eigen::MatrixXd exotica::BayesianIKSolver::Vinv_old
private

Backward message covariance inverse (last most optimal value)

Definition at line 101 of file bayesian_ik_solver.h.

◆ W

Eigen::MatrixXd exotica::BayesianIKSolver::W
private

Configuration space weight matrix inverse.

Definition at line 117 of file bayesian_ik_solver.h.

◆ Winv

Eigen::MatrixXd exotica::BayesianIKSolver::Winv
private

Configuration space weight matrix inverse.

Definition at line 118 of file bayesian_ik_solver.h.


The documentation for this class was generated from the following files:


exotica_aico_solver
Author(s):
autogenerated on Fri Aug 2 2024 08:43:13