CompleteOrthogonalDecomposition.hpp
Go to the documentation of this file.
1 /*
2  * Copyright 2024 INRIA
3  */
4 
5 #ifndef __eigenpy_decompositions_complete_orthogonal_decomposition_hpp__
6 #define __eigenpy_decompositions_complete_orthogonal_decomposition_hpp__
7 
8 #include "eigenpy/eigenpy.hpp"
10 
11 #include <Eigen/QR>
12 
13 namespace eigenpy {
14 
15 template <typename _MatrixType>
17  : public boost::python::def_visitor<
18  CompleteOrthogonalDecompositionSolverVisitor<_MatrixType> > {
19  typedef _MatrixType MatrixType;
20  typedef typename MatrixType::Scalar Scalar;
21  typedef typename MatrixType::RealScalar RealScalar;
22  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, MatrixType::Options>
24  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic,
25  MatrixType::Options>
27  typedef Eigen::CompleteOrthogonalDecomposition<MatrixType> Solver;
28  typedef Solver Self;
29 
30  template <class PyClass>
31  void visit(PyClass &cl) const {
32  cl.def(bp::init<>(bp::arg("self"),
33  "Default constructor.\n"
34  "The default constructor is useful in cases in which the "
35  "user intends to perform decompositions via "
36  "CompleteOrthogonalDecomposition.compute(matrix)"))
37  .def(bp::init<Eigen::DenseIndex, Eigen::DenseIndex>(
38  bp::args("self", "rows", "cols"),
39  "Default constructor with memory preallocation.\n"
40  "Like the default constructor but with preallocation of the "
41  "internal data according to the specified problem size. "))
42  .def(bp::init<MatrixType>(bp::args("self", "matrix"),
43  "Constructs a complete orthogonal "
44  "factorization from a given matrix.\n"
45  "This constructor computes the complete "
46  "orthogonal factorization of the matrix "
47  "matrix by calling the method compute()."))
48 
49  .def("absDeterminant", &Self::absDeterminant, bp::arg("self"),
50  "Returns the absolute value of the determinant of the matrix "
51  "associated with the complete orthogonal decomposition.\n"
52  "It has only linear complexity (that is, O(n) where n is the "
53  "dimension of the square matrix) as the complete orthogonal "
54  "decomposition has "
55  "already been computed.\n"
56  "Note: This is only for square matrices.")
57  .def("logAbsDeterminant", &Self::logAbsDeterminant, bp::arg("self"),
58  "Returns the natural log of the absolute value of the determinant "
59  "of the matrix of which *this is the complete orthogonal "
60  "decomposition.\n"
61  "It has only linear complexity (that is, O(n) where n is the "
62  "dimension of the square matrix) as the complete orthogonal "
63  "decomposition has "
64  "already been computed.\n"
65  "Note: This is only for square matrices. This method is useful to "
66  "work around the risk of overflow/underflow that's inherent to "
67  "determinant computation.")
68  .def("dimensionOfKernel", &Self::dimensionOfKernel, bp::arg("self"),
69  "Returns the dimension of the kernel of the matrix of which *this "
70  "is the complete orthogonal decomposition.")
71  .def("info", &Self::info, bp::arg("self"),
72  "Reports whether the complete orthogonal factorization was "
73  "successful.\n"
74  "Note: This function always returns Success. It is provided for "
75  "compatibility with other factorization routines.")
76  .def("isInjective", &Self::isInjective, bp::arg("self"),
77  "Returns true if the matrix associated with this complete "
78  "orthogonal decomposition "
79  "represents an injective linear map, i.e. has trivial kernel; "
80  "false otherwise.\n"
81  "\n"
82  "Note: This method has to determine which pivots should be "
83  "considered nonzero. For that, it uses the threshold value that "
84  "you can control by calling setThreshold(threshold).")
85  .def("isInvertible", &Self::isInvertible, bp::arg("self"),
86  "Returns true if the matrix associated with the complete "
87  "orthogonal decomposition "
88  "is invertible.\n"
89  "\n"
90  "Note: This method has to determine which pivots should be "
91  "considered nonzero. For that, it uses the threshold value that "
92  "you can control by calling setThreshold(threshold).")
93  .def("isSurjective", &Self::isSurjective, bp::arg("self"),
94  "Returns true if the matrix associated with this complete "
95  "orthogonal decomposition "
96  "represents a surjective linear map; false otherwise.\n"
97  "\n"
98  "Note: This method has to determine which pivots should be "
99  "considered nonzero. For that, it uses the threshold value that "
100  "you can control by calling setThreshold(threshold).")
101  .def("maxPivot", &Self::maxPivot, bp::arg("self"),
102  "Returns the absolute value of the biggest pivot, i.e. the "
103  "biggest diagonal coefficient of U.")
104  .def("nonzeroPivots", &Self::nonzeroPivots, bp::arg("self"),
105  "Returns the number of nonzero pivots in the complete orthogonal "
106  "decomposition. "
107  "Here nonzero is meant in the exact sense, not in a fuzzy sense. "
108  "So that notion isn't really intrinsically interesting, but it is "
109  "still useful when implementing algorithms.")
110  .def("rank", &Self::rank, bp::arg("self"),
111  "Returns the rank of the matrix associated with the complete "
112  "orthogonal "
113  "decomposition.\n"
114  "\n"
115  "Note: This method has to determine which pivots should be "
116  "considered nonzero. For that, it uses the threshold value that "
117  "you can control by calling setThreshold(threshold).")
118 
119  .def("setThreshold",
120  (Self & (Self::*)(const RealScalar &)) & Self::setThreshold,
121  bp::args("self", "threshold"),
122  "Allows to prescribe a threshold to be used by certain methods, "
123  "such as rank(), who need to determine when pivots are to be "
124  "considered nonzero. This is not used for the complete orthogonal "
125  "decomposition "
126  "itself.\n"
127  "\n"
128  "When it needs to get the threshold value, Eigen calls "
129  "threshold(). By default, this uses a formula to automatically "
130  "determine a reasonable threshold. Once you have called the "
131  "present method setThreshold(const RealScalar&), your value is "
132  "used instead.\n"
133  "\n"
134  "Note: A pivot will be considered nonzero if its absolute value "
135  "is strictly greater than |pivot| ⩽ threshold×|maxpivot| where "
136  "maxpivot is the biggest pivot.",
137  bp::return_self<>())
138  .def("threshold", &Self::threshold, bp::arg("self"),
139  "Returns the threshold that will be used by certain methods such "
140  "as rank().")
141 
142  .def("matrixQTZ", &Self::matrixQTZ, bp::arg("self"),
143  "Returns the matrix where the complete orthogonal decomposition "
144  "is stored.",
145  bp::return_value_policy<bp::copy_const_reference>())
146  .def("matrixT", &Self::matrixT, bp::arg("self"),
147  "Returns the matrix where the complete orthogonal decomposition "
148  "is stored.",
149  bp::return_value_policy<bp::copy_const_reference>())
150  .def("matrixZ", &Self::matrixZ, bp::arg("self"),
151  "Returns the matrix Z.")
152 
153  .def(
154  "compute",
155  (Solver & (Solver::*)(const Eigen::EigenBase<MatrixType> &matrix)) &
156  Solver::compute,
157  bp::args("self", "matrix"),
158  "Computes the complete orthogonal factorization of given matrix.",
159  bp::return_self<>())
160 
161  .def("pseudoInverse", pseudoInverse, bp::arg("self"),
162  "Returns the pseudo-inverse of the matrix associated with the "
163  "complete orthogonal "
164  "decomposition.")
165 
166  .def("solve", &solve<MatrixXs>, bp::args("self", "B"),
167  "Returns the solution X of A X = B using the current "
168  "decomposition of A where B is a right hand side matrix.");
169  }
170 
171  static void expose() {
172  static const std::string classname =
173  "CompleteOrthogonalDecomposition" + scalar_name<Scalar>::shortname();
174  expose(classname);
175  }
176 
177  static void expose(const std::string &name) {
178  bp::class_<Solver>(
179  name.c_str(),
180  "This class performs a rank-revealing complete orthogonal "
181  "decomposition of a matrix A into matrices P, Q, T, and Z such that:\n"
182  "AP=Q[T000]Z"
183  "by using Householder transformations. Here, P is a permutation "
184  "matrix, Q and Z are unitary matrices and T an upper triangular matrix "
185  "of size rank-by-rank. A may be rank deficient.",
186  bp::no_init)
188  .def(IdVisitor<Solver>());
189  }
190 
191  private:
192  template <typename MatrixOrVector>
193  static MatrixOrVector solve(const Solver &self, const MatrixOrVector &vec) {
194  return self.solve(vec);
195  }
196  static MatrixXs pseudoInverse(const Self &self) {
197  return self.pseudoInverse();
198  }
199 };
200 
201 } // namespace eigenpy
202 
203 #endif // ifndef
204  // __eigenpy_decompositions_complete_orthogonal_decomposition_hpp__
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::MatrixType
_MatrixType MatrixType
Definition: CompleteOrthogonalDecomposition.hpp:19
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::Self
Solver Self
Definition: CompleteOrthogonalDecomposition.hpp:28
scalar-name.hpp
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::solve
static MatrixOrVector solve(const Solver &self, const MatrixOrVector &vec)
Definition: CompleteOrthogonalDecomposition.hpp:193
eigenpy::CompleteOrthogonalDecompositionSolverVisitor
Definition: CompleteOrthogonalDecomposition.hpp:16
test_matrix.vec
vec
Definition: test_matrix.py:180
eigenpy
Definition: alignment.hpp:14
eigenpy::scalar_name::shortname
static std::string shortname()
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::VectorXs
Eigen::Matrix< Scalar, Eigen::Dynamic, 1, MatrixType::Options > VectorXs
Definition: CompleteOrthogonalDecomposition.hpp:23
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::MatrixXs
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic, MatrixType::Options > MatrixXs
Definition: CompleteOrthogonalDecomposition.hpp:26
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::Scalar
MatrixType::Scalar Scalar
Definition: CompleteOrthogonalDecomposition.hpp:20
eigenpy::IdVisitor
Add the Python method id to retrieving a unique id for a given object exposed with Boost....
Definition: id.hpp:18
setup.name
name
Definition: setup.in.py:179
eigenpy.hpp
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::expose
static void expose()
Definition: CompleteOrthogonalDecomposition.hpp:171
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::pseudoInverse
static MatrixXs pseudoInverse(const Self &self)
Definition: CompleteOrthogonalDecomposition.hpp:196
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::expose
static void expose(const std::string &name)
Definition: CompleteOrthogonalDecomposition.hpp:177
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::RealScalar
MatrixType::RealScalar RealScalar
Definition: CompleteOrthogonalDecomposition.hpp:21
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::Solver
Eigen::CompleteOrthogonalDecomposition< MatrixType > Solver
Definition: CompleteOrthogonalDecomposition.hpp:27
eigenpy::CompleteOrthogonalDecompositionSolverVisitor::visit
void visit(PyClass &cl) const
Definition: CompleteOrthogonalDecomposition.hpp:31


eigenpy
Author(s): Justin Carpentier, Nicolas Mansard
autogenerated on Sat Nov 2 2024 02:14:45