ColPivHouseholderQR.hpp
Go to the documentation of this file.
1 /*
2  * Copyright 2024 INRIA
3  */
4 
5 #ifndef __eigenpy_decompositions_col_piv_houselholder_qr_hpp__
6 #define __eigenpy_decompositions_col_piv_houselholder_qr_hpp__
7 
8 #include "eigenpy/eigenpy.hpp"
10 
11 #include <Eigen/QR>
12 
13 namespace eigenpy {
14 
15 template <typename _MatrixType>
17  : public boost::python::def_visitor<
18  ColPivHouseholderQRSolverVisitor<_MatrixType> > {
19  typedef _MatrixType MatrixType;
20  typedef typename MatrixType::Scalar Scalar;
21  typedef typename MatrixType::RealScalar RealScalar;
22  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, MatrixType::Options>
24  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic,
25  MatrixType::Options>
27  typedef Eigen::ColPivHouseholderQR<MatrixType> Solver;
28  typedef Solver Self;
29 
30  template <class PyClass>
31  void visit(PyClass &cl) const {
32  cl.def(bp::init<>(bp::arg("self"),
33  "Default constructor.\n"
34  "The default constructor is useful in cases in which the "
35  "user intends to perform decompositions via "
36  "HouseholderQR.compute(matrix)"))
37  .def(bp::init<Eigen::DenseIndex, Eigen::DenseIndex>(
38  bp::args("self", "rows", "cols"),
39  "Default constructor with memory preallocation.\n"
40  "Like the default constructor but with preallocation of the "
41  "internal data according to the specified problem size. "))
42  .def(bp::init<MatrixType>(
43  bp::args("self", "matrix"),
44  "Constructs a QR factorization from a given matrix.\n"
45  "This constructor computes the QR factorization of the matrix "
46  "matrix by calling the method compute()."))
47 
48  .def("absDeterminant", &Self::absDeterminant, bp::arg("self"),
49  "Returns the absolute value of the determinant of the matrix of "
50  "which *this is the QR decomposition.\n"
51  "It has only linear complexity (that is, O(n) where n is the "
52  "dimension of the square matrix) as the QR decomposition has "
53  "already been computed.\n"
54  "Note: This is only for square matrices.")
55  .def("logAbsDeterminant", &Self::logAbsDeterminant, bp::arg("self"),
56  "Returns the natural log of the absolute value of the determinant "
57  "of the matrix of which *this is the QR decomposition.\n"
58  "It has only linear complexity (that is, O(n) where n is the "
59  "dimension of the square matrix) as the QR decomposition has "
60  "already been computed.\n"
61  "Note: This is only for square matrices. This method is useful to "
62  "work around the risk of overflow/underflow that's inherent to "
63  "determinant computation.")
64  .def("dimensionOfKernel", &Self::dimensionOfKernel, bp::arg("self"),
65  "Returns the dimension of the kernel of the matrix of which *this "
66  "is the QR decomposition.")
67  .def("info", &Self::info, bp::arg("self"),
68  "Reports whether the QR factorization was successful.\n"
69  "Note: This function always returns Success. It is provided for "
70  "compatibility with other factorization routines.")
71  .def("isInjective", &Self::isInjective, bp::arg("self"),
72  "Returns true if the matrix associated with this QR decomposition "
73  "represents an injective linear map, i.e. has trivial kernel; "
74  "false otherwise.\n"
75  "\n"
76  "Note: This method has to determine which pivots should be "
77  "considered nonzero. For that, it uses the threshold value that "
78  "you can control by calling setThreshold(threshold).")
79  .def("isInvertible", &Self::isInvertible, bp::arg("self"),
80  "Returns true if the matrix associated with the QR decomposition "
81  "is invertible.\n"
82  "\n"
83  "Note: This method has to determine which pivots should be "
84  "considered nonzero. For that, it uses the threshold value that "
85  "you can control by calling setThreshold(threshold).")
86  .def("isSurjective", &Self::isSurjective, bp::arg("self"),
87  "Returns true if the matrix associated with this QR decomposition "
88  "represents a surjective linear map; false otherwise.\n"
89  "\n"
90  "Note: This method has to determine which pivots should be "
91  "considered nonzero. For that, it uses the threshold value that "
92  "you can control by calling setThreshold(threshold).")
93  .def("maxPivot", &Self::maxPivot, bp::arg("self"),
94  "Returns the absolute value of the biggest pivot, i.e. the "
95  "biggest diagonal coefficient of U.")
96  .def("nonzeroPivots", &Self::nonzeroPivots, bp::arg("self"),
97  "Returns the number of nonzero pivots in the QR decomposition. "
98  "Here nonzero is meant in the exact sense, not in a fuzzy sense. "
99  "So that notion isn't really intrinsically interesting, but it is "
100  "still useful when implementing algorithms.")
101  .def("rank", &Self::rank, bp::arg("self"),
102  "Returns the rank of the matrix associated with the QR "
103  "decomposition.\n"
104  "\n"
105  "Note: This method has to determine which pivots should be "
106  "considered nonzero. For that, it uses the threshold value that "
107  "you can control by calling setThreshold(threshold).")
108 
109  .def("setThreshold",
110  (Self & (Self::*)(const RealScalar &)) & Self::setThreshold,
111  bp::args("self", "threshold"),
112  "Allows to prescribe a threshold to be used by certain methods, "
113  "such as rank(), who need to determine when pivots are to be "
114  "considered nonzero. This is not used for the QR decomposition "
115  "itself.\n"
116  "\n"
117  "When it needs to get the threshold value, Eigen calls "
118  "threshold(). By default, this uses a formula to automatically "
119  "determine a reasonable threshold. Once you have called the "
120  "present method setThreshold(const RealScalar&), your value is "
121  "used instead.\n"
122  "\n"
123  "Note: A pivot will be considered nonzero if its absolute value "
124  "is strictly greater than |pivot| ⩽ threshold×|maxpivot| where "
125  "maxpivot is the biggest pivot.",
126  bp::return_self<>())
127  .def("threshold", &Self::threshold, bp::arg("self"),
128  "Returns the threshold that will be used by certain methods such "
129  "as rank().")
130 
131  .def("matrixQR", &Self::matrixQR, bp::arg("self"),
132  "Returns the matrix where the Householder QR decomposition is "
133  "stored in a LAPACK-compatible way.",
134  bp::return_value_policy<bp::copy_const_reference>())
135  .def("matrixR", &Self::matrixR, bp::arg("self"),
136  "Returns the matrix where the result Householder QR is stored.",
137  bp::return_value_policy<bp::copy_const_reference>())
138 
139  .def(
140  "compute",
141  (Solver & (Solver::*)(const Eigen::EigenBase<MatrixType> &matrix)) &
142  Solver::compute,
143  bp::args("self", "matrix"),
144  "Computes the QR factorization of given matrix.",
145  bp::return_self<>())
146 
147  .def("inverse", inverse, bp::arg("self"),
148  "Returns the inverse of the matrix associated with the QR "
149  "decomposition..")
150 
151  .def("solve", &solve<MatrixXs>, bp::args("self", "B"),
152  "Returns the solution X of A X = B using the current "
153  "decomposition of A where B is a right hand side matrix.");
154  }
155 
156  static void expose() {
157  static const std::string classname =
158  "ColPivHouseholderQR" + scalar_name<Scalar>::shortname();
159  expose(classname);
160  }
161 
162  static void expose(const std::string &name) {
163  bp::class_<Solver>(
164  name.c_str(),
165  "This class performs a rank-revealing QR decomposition of a matrix A "
166  "into matrices P, Q and R such that:\n"
167  "AP=QR\n"
168  "by using Householder transformations. Here, P is a permutation "
169  "matrix, Q a unitary matrix and R an upper triangular matrix.\n"
170  "\n"
171  "This decomposition performs column pivoting in order to be "
172  "rank-revealing and improve numerical stability. It is slower than "
173  "HouseholderQR, and faster than FullPivHouseholderQR.",
174  bp::no_init)
176  .def(IdVisitor<Solver>());
177  }
178 
179  private:
180  template <typename MatrixOrVector>
181  static MatrixOrVector solve(const Solver &self, const MatrixOrVector &vec) {
182  return self.solve(vec);
183  }
184  static MatrixXs inverse(const Self &self) { return self.inverse(); }
185 };
186 
187 } // namespace eigenpy
188 
189 #endif // ifndef __eigenpy_decompositions_col_piv_houselholder_qr_hpp__
eigenpy::ColPivHouseholderQRSolverVisitor::visit
void visit(PyClass &cl) const
Definition: ColPivHouseholderQR.hpp:31
eigenpy::ColPivHouseholderQRSolverVisitor::Scalar
MatrixType::Scalar Scalar
Definition: ColPivHouseholderQR.hpp:20
eigenpy::ColPivHouseholderQRSolverVisitor::expose
static void expose()
Definition: ColPivHouseholderQR.hpp:156
scalar-name.hpp
eigenpy::ColPivHouseholderQRSolverVisitor::MatrixXs
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic, MatrixType::Options > MatrixXs
Definition: ColPivHouseholderQR.hpp:26
test_matrix.vec
vec
Definition: test_matrix.py:180
eigenpy
Definition: alignment.hpp:14
eigenpy::scalar_name::shortname
static std::string shortname()
eigenpy::ColPivHouseholderQRSolverVisitor::MatrixType
_MatrixType MatrixType
Definition: ColPivHouseholderQR.hpp:19
eigenpy::ColPivHouseholderQRSolverVisitor::Self
Solver Self
Definition: ColPivHouseholderQR.hpp:28
eigenpy::ColPivHouseholderQRSolverVisitor::expose
static void expose(const std::string &name)
Definition: ColPivHouseholderQR.hpp:162
eigenpy::ColPivHouseholderQRSolverVisitor::solve
static MatrixOrVector solve(const Solver &self, const MatrixOrVector &vec)
Definition: ColPivHouseholderQR.hpp:181
eigenpy::IdVisitor
Add the Python method id to retrieving a unique id for a given object exposed with Boost....
Definition: id.hpp:18
eigenpy::ColPivHouseholderQRSolverVisitor::inverse
static MatrixXs inverse(const Self &self)
Definition: ColPivHouseholderQR.hpp:184
setup.name
name
Definition: setup.in.py:179
eigenpy.hpp
eigenpy::ColPivHouseholderQRSolverVisitor::Solver
Eigen::ColPivHouseholderQR< MatrixType > Solver
Definition: ColPivHouseholderQR.hpp:27
eigenpy::ColPivHouseholderQRSolverVisitor::RealScalar
MatrixType::RealScalar RealScalar
Definition: ColPivHouseholderQR.hpp:21
eigenpy::ColPivHouseholderQRSolverVisitor::VectorXs
Eigen::Matrix< Scalar, Eigen::Dynamic, 1, MatrixType::Options > VectorXs
Definition: ColPivHouseholderQR.hpp:23
eigenpy::ColPivHouseholderQRSolverVisitor
Definition: ColPivHouseholderQR.hpp:16


eigenpy
Author(s): Justin Carpentier, Nicolas Mansard
autogenerated on Sat Nov 2 2024 02:14:45