Go to the documentation of this file.
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
17 template <
typename Op,
typename XprType>
23 typedef typename XprType::Nested
Nested;
25 static const int NumDimensions = XprTraits::NumDimensions;
26 static const int Layout = XprTraits::Layout;
29 template<
typename Op,
typename XprType>
35 template<
typename Op,
typename XprType>
48 template <
typename Op,
typename XprType>
50 :
public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> {
79 template <
typename Self,
typename Reducer,
typename Device>
83 template <
typename Op,
typename ArgType,
typename Device>
108 m_exclusive(op.exclusive()),
109 m_accumulator(op.accumulator()),
121 for (
int i = 0; i < op.
axis(); ++i) {
122 m_stride = m_stride * dims[i];
125 for (
int i = NumDims - 1; i > op.
axis(); --i) {
126 m_stride = m_stride * dims[i];
132 return m_impl.dimensions();
144 return m_accumulator;
160 m_impl.evalSubExprsIfNeeded(NULL);
163 launcher(*
this,
data);
169 launcher(*
this, m_output);
173 template<
int LoadMode>
175 return internal::ploadt<PacketReturnType, LoadMode>(m_output + index);
185 return m_output[index];
193 if (m_output != NULL) {
213 template <
typename Self,
typename Reducer,
typename Device>
215 void operator()(Self&
self,
typename Self::CoeffReturnType *data) {
221 for (
Index idx1 = 0; idx1 < total_size; idx1 +=
self.stride() *
self.
size()) {
222 for (
Index idx2 = 0; idx2 <
self.stride(); idx2++) {
224 Index offset = idx1 + idx2;
227 typename Self::CoeffReturnType accum =
self.accumulator().initialize();
228 for (
Index idx3 = 0; idx3 <
self.size(); idx3++) {
229 Index curr = offset + idx3 *
self.stride();
231 if (
self.exclusive()) {
232 data[curr] =
self.accumulator().finalize(accum);
233 self.accumulator().reduce(
self.inner().coeff(curr), &accum);
235 self.accumulator().reduce(
self.inner().coeff(curr), &accum);
236 data[curr] =
self.accumulator().finalize(accum);
244 #if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
250 template <
typename Self,
typename Reducer>
251 __global__
void ScanKernel(Self
self,
Index total_size,
typename Self::CoeffReturnType* data) {
253 Index val = threadIdx.x + blockIdx.x * blockDim.x;
254 Index offset = (val /
self.stride()) *
self.stride() *
self.size() + val %
self.stride();
256 if (offset + (
self.
size() - 1) *
self.stride() < total_size) {
258 typename Self::CoeffReturnType accum =
self.accumulator().initialize();
259 for (
Index idx = 0; idx <
self.size(); idx++) {
260 Index curr = offset + idx *
self.stride();
261 if (
self.exclusive()) {
262 data[curr] =
self.accumulator().finalize(accum);
263 self.accumulator().reduce(
self.inner().coeff(curr), &accum);
265 self.accumulator().reduce(
self.inner().coeff(curr), &accum);
266 data[curr] =
self.accumulator().finalize(accum);
274 template <
typename Self,
typename Reducer>
275 struct ScanLauncher<Self, Reducer, GpuDevice> {
276 void operator()(
const Self&
self,
typename Self::CoeffReturnType* data) {
278 Index num_blocks = (total_size /
self.size() + 63) / 64;
279 Index block_size = 64;
280 LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0,
self.device(),
self, total_size, data);
283 #endif // EIGEN_USE_GPU && __CUDACC__
287 #endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const
Eigen::internal::nested< TensorScanOp >::type Nested
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE TensorEvaluator< ArgType, Device > & inner() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const
TensorEvaluator< const TensorScanOp< Op, ArgType >, Device > Self
remove_reference< Nested >::type _Nested
internal::packet_traits< Scalar >::type type
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Index & size() const
EIGEN_DEVICE_FUNC internal::traits< Derived >::template MakePointer< Scalar >::Type data() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType * data() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Eigen::NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Op & accumulator() const
TensorScanOp< Op, ArgType > XprType
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Device & device() const
XprTraits::StorageKind StorageKind
XprType::CoeffReturnType CoeffReturnType
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Op accumulator() const
DSizes< Index, NumDims > Dimensions
#define EIGEN_STRONG_INLINE
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp(const XprType &expr, const Index &axis, bool exclusive=false, const Op &op=Op())
traits< XprType > XprTraits
const typedef TensorScanOp< Op, XprType > & type
PacketType< CoeffReturnType, Device >::type PacketReturnType
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE XprType & expression() const
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Index axis() const
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar *data)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes< Indices... > &)
Eigen::internal::traits< TensorScanOp >::Index Index
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
XprType::CoeffReturnType CoeffReturnType
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Index & stride() const
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
void operator()(Self &self, typename Self::CoeffReturnType *data)
Eigen::internal::traits< TensorScanOp >::StorageKind StorageKind
CoeffReturnType * m_output
internal::remove_const< typename XprType::Scalar >::type Scalar
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
A cost model used to limit the number of threads used for evaluating tensor expression.
TensorScanOp< Op, XprType > type
Eigen::internal::traits< TensorScanOp >::Scalar Scalar
TensorEvaluator< ArgType, Device > m_impl
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:07:03