Go to the documentation of this file.
11 #ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
12 #define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
24 template<
typename XprType>
31 typedef typename XprType::Nested
Nested;
33 static const int NumDimensions = XprTraits::NumDimensions;
34 static const int Layout = XprTraits::Layout;
37 template<
typename XprType>
43 template<
typename XprType>
52 template<
typename XprType>
75 template<
typename ArgType,
typename Device>
99 return m_impl.dimensions();
103 m_impl.evalSubExprsIfNeeded(NULL);
134 template<
typename ReduceOp,
typename Dims,
typename XprType>
144 static const int Layout = XprTraits::Layout;
147 template<
typename ReduceOp,
typename Dims,
typename XprType>
153 template<
typename ReduceOp,
typename Dims,
typename XprType>
162 template<
typename ReduceOp,
typename Dims,
typename XprType>
200 template<
typename ReduceOp,
typename Dims,
typename ArgType,
typename Device>
223 : m_orig_impl(op.expression(),
device),
224 m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()),
device),
225 m_return_dim(op.return_dim()) {
227 gen_strides(m_orig_impl.dimensions(), m_strides);
230 m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size;
233 m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size;
235 m_stride_div = m_strides[m_return_dim];
239 return m_impl.dimensions();
243 m_impl.evalSubExprsIfNeeded(NULL);
252 return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
259 const double compute_cost = 1.0 +
260 (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>()));
261 return m_orig_impl.costPerCoeff(vectorized) +
267 if (m_return_dim < 0) {
271 "Asking to convert index to a dimension outside of the rank");
277 for (
int i = 1; i < NumDims; ++i) {
278 strides[i] = strides[i-1] * dims[i-1];
281 strides[NumDims-1] = 1;
282 for (
int i = NumDims - 2; i >= 0; --i) {
283 strides[i] = strides[i+1] * dims[i+1];
299 #endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
Eigen::internal::traits< TensorIndexTupleOp >::StorageKind StorageKind
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Eigen::internal::traits< TensorIndexTupleOp >::Index Index
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
TensorEvaluator< const TensorIndexTupleOp< ArgType >, Device >::Dimensions InputDimensions
TensorEvaluator< const TensorIndexTupleOp< ArgType >, Device > m_orig_impl
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
Eigen::internal::traits< TensorIndexTupleOp >::Scalar Scalar
TensorTupleReducerOp< ReduceOp, Dims, XprType > type
TensorEvaluator< ArgType, Device > m_impl
TensorEvaluator< const TensorReductionOp< ReduceOp, Dims, const TensorIndexTupleOp< ArgType > >, Device >::Dimensions Dimensions
Eigen::internal::traits< TensorTupleReducerOp >::StorageKind StorageKind
EIGEN_DEVICE_FUNC Scalar * data() const
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
Tuple< Index, typename XprTraits::Scalar > Scalar
Eigen::internal::traits< TensorTupleReducerOp >::Index Index
TensorTupleReducerOp< ReduceOp, Dims, ArgType > XprType
XprTraits::StorageKind StorageKind
Eigen::internal::nested< TensorIndexTupleOp >::type Nested
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar *)
remove_reference< Nested >::type _Nested
EIGEN_DEVICE_FUNC int return_dim() const
const EIGEN_DEVICE_FUNC internal::remove_all< typename XprType::Nested >::type & expression() const
TensorEvaluator< const TensorReductionOp< ReduceOp, Dims, const TensorIndexTupleOp< ArgType > >, Device > m_impl
const EIGEN_DEVICE_FUNC ReduceOp & reduce_op() const
remove_reference< Nested >::type _Nested
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType &expr, const ReduceOp &reduce_op, const int return_dim, const Dims &reduce_dims)
const EIGEN_DEVICE_FUNC internal::remove_all< typename XprType::Nested >::type & expression() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
const typedef TensorIndexTupleOp< XprType > & type
TensorIndexTupleOp< ArgType >::CoeffReturnType TupleType
TensorIndexTupleOp< ArgType > XprType
traits< XprType > XprTraits
#define EIGEN_STRONG_INLINE
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
Eigen::internal::traits< TensorTupleReducerOp >::Scalar Scalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar *)
XprTraits::StorageKind StorageKind
Eigen::internal::nested< TensorTupleReducerOp >::type Nested
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes< Indices... > &)
EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions &dims, StrideDims &strides)
TensorIndexTupleOp< XprType > type
const EIGEN_DEVICE_FUNC Dims & reduce_dims() const
XprType::CoeffReturnType CoeffReturnType
XprType::CoeffReturnType CoeffReturnType
EIGEN_DEVICE_FUNC Scalar * data() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType &expr)
A cost model used to limit the number of threads used for evaluating tensor expression.
const typedef TensorTupleReducerOp< ReduceOp, Dims, XprType > & type
array< Index, NumDims > StrideDims
Eigen::NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Derived::Scalar CoeffReturnType
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
Eigen::NumTraits< Scalar >::Real RealScalar
traits< XprType > XprTraits
Tuple< Index, typename XprType::CoeffReturnType > CoeffReturnType
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
TensorEvaluator< ArgType, Device >::Dimensions Dimensions
const ReduceOp m_reduce_op
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:06:34