Go to the documentation of this file.
10 #ifndef EIGEN_AUTODIFF_JACOBIAN_H
11 #define EIGEN_AUTODIFF_JACOBIAN_H
23 #if EIGEN_HAS_VARIADIC_TEMPLATES
24 template<
typename... T>
29 template<
typename T0,
typename T1>
31 template<
typename T0,
typename T1,
typename T2>
53 #if EIGEN_HAS_VARIADIC_TEMPLATES
61 template<
typename... ParamsType>
63 const ParamsType&... Params)
const
72 #if EIGEN_HAS_VARIADIC_TEMPLATES
73 Functor::operator()(
x, v, Params...);
75 Functor::operator()(
x, v);
87 av[j].derivatives().
resize(
x.rows());
90 ax[i].derivatives() = DerivativeType::Unit(
x.rows(),i);
92 #if EIGEN_HAS_VARIADIC_TEMPLATES
93 Functor::operator()(ax, &av, Params...);
95 Functor::operator()(ax, &av);
100 (*v)[i] = av[i].value();
101 jac.row(i) = av[i].derivatives();
108 #endif // EIGEN_AUTODIFF_JACOBIAN_H
Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > JacobianType
A scalar type replacement with automatic differentation capability.
Matrix< ActiveScalar, ValuesAtCompileTime, 1 > ActiveValue
Matrix< ActiveScalar, InputsAtCompileTime, 1 > ActiveInput
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Matrix< Scalar, InputsAtCompileTime, 1 > DerivativeType
AutoDiffScalar< DerivativeType > ActiveScalar
AutoDiffJacobian(const Functor &f)
#define EIGEN_STRONG_INLINE
AutoDiffJacobian(const T0 &a0, const T1 &a1, const T2 &a2)
Functor::ValueType ValueType
Functor::InputType InputType
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const
The matrix class, also used for vectors and row-vectors.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const
AutoDiffJacobian(const T0 &a0, const T1 &a1)
AutoDiffJacobian(const T0 &a0)
void operator()(const InputType &x, ValueType *v, JacobianType *_jac=0) const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
JacobianType::Index Index
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:05:37