UpperBidiagonalization.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_BIDIAGONALIZATION_H
11 #define EIGEN_BIDIAGONALIZATION_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
17 // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
18 
19 template<typename _MatrixType> class UpperBidiagonalization
20 {
21  public:
22 
23  typedef _MatrixType MatrixType;
24  enum {
25  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
26  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
28  };
29  typedef typename MatrixType::Scalar Scalar;
30  typedef typename MatrixType::RealScalar RealScalar;
31  typedef typename MatrixType::Index Index;
37  typedef HouseholderSequence<
38  const MatrixType,
41  typedef HouseholderSequence<
46 
54 
55  UpperBidiagonalization(const MatrixType& matrix)
56  : m_householder(matrix.rows(), matrix.cols()),
57  m_bidiagonal(matrix.cols(), matrix.cols()),
58  m_isInitialized(false)
59  {
60  compute(matrix);
61  }
62 
63  UpperBidiagonalization& compute(const MatrixType& matrix);
64 
65  const MatrixType& householder() const { return m_householder; }
66  const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
67 
69  {
70  eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
71  return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
72  }
73 
74  const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
75  {
76  eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
77  return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
78  .setLength(m_householder.cols()-1)
79  .setShift(1);
80  }
81 
82  protected:
83  MatrixType m_householder;
84  BidiagonalType m_bidiagonal;
86 };
87 
88 template<typename _MatrixType>
90 {
91  Index rows = matrix.rows();
92  Index cols = matrix.cols();
93 
94  eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
95 
96  m_householder = matrix;
97 
98  ColVectorType temp(rows);
99 
100  for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
101  {
102  Index remainingRows = rows - k;
103  Index remainingCols = cols - k - 1;
104 
105  // construct left householder transform in-place in m_householder
106  m_householder.col(k).tail(remainingRows)
107  .makeHouseholderInPlace(m_householder.coeffRef(k,k),
108  m_bidiagonal.template diagonal<0>().coeffRef(k));
109  // apply householder transform to remaining part of m_householder on the left
110  m_householder.bottomRightCorner(remainingRows, remainingCols)
111  .applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
112  m_householder.coeff(k,k),
113  temp.data());
114 
115  if(k == cols-1) break;
116 
117  // construct right householder transform in-place in m_householder
118  m_householder.row(k).tail(remainingCols)
119  .makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
120  m_bidiagonal.template diagonal<1>().coeffRef(k));
121  // apply householder transform to remaining part of m_householder on the left
122  m_householder.bottomRightCorner(remainingRows-1, remainingCols)
123  .applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
124  m_householder.coeff(k,k+1),
125  temp.data());
126  }
127  m_isInitialized = true;
128  return *this;
129 }
130 
131 #if 0
132 
136 template<typename Derived>
139 {
141 }
142 #endif
143 
144 } // end namespace internal
145 
146 } // end namespace Eigen
147 
148 #endif // EIGEN_BIDIAGONALIZATION_H
Matrix< Scalar, 1, ColsAtCompileTime > RowVectorType
const HouseholderVSequenceType householderV()
EIGEN_STRONG_INLINE const Scalar * data() const
UpperBidiagonalization & compute(const MatrixType &matrix)
const HouseholderUSequenceType householderU() const
Definition: LDLT.h:16
HouseholderSequence< const typename internal::remove_all< typename MatrixType::ConjugateReturnType >::type, Diagonal< const MatrixType, 1 >, OnTheRight > HouseholderVSequenceType
HouseholderSequence< const MatrixType, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, const Diagonal< const MatrixType, 0 > > > HouseholderUSequenceType
Sequence of Householder reflections acting on subspaces with decreasing size.
Matrix< Scalar, RowsAtCompileTime, 1 > ColVectorType
Matrix< Scalar, ColsAtCompileTime, 1 > DiagVectorType
Matrix< Scalar, ColsAtCompileTimeMinusOne, 1 > SuperDiagVectorType
const BidiagonalType & bidiagonal() const
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:64
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:59
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
#define eigen_assert(x)
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
BandMatrix< RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0 > BidiagonalType
UpperBidiagonalization(const MatrixType &matrix)


tuw_aruco
Author(s): Lukas Pfeifhofer
autogenerated on Mon Feb 28 2022 23:58:06