TriangularMatrixVector_MKL.h
Go to the documentation of this file.
1 /*
2  Copyright (c) 2011, Intel Corporation. All rights reserved.
3 
4  Redistribution and use in source and binary forms, with or without modification,
5  are permitted provided that the following conditions are met:
6 
7  * Redistributions of source code must retain the above copyright notice, this
8  list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright notice,
10  this list of conditions and the following disclaimer in the documentation
11  and/or other materials provided with the distribution.
12  * Neither the name of Intel Corporation nor the names of its contributors may
13  be used to endorse or promote products derived from this software without
14  specific prior written permission.
15 
16  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27  ********************************************************************************
28  * Content : Eigen bindings to Intel(R) MKL
29  * Triangular matrix-vector product functionality based on ?TRMV.
30  ********************************************************************************
31 */
32 
33 #ifndef EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
34 #define EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
35 
36 namespace Eigen {
37 
38 namespace internal {
39 
40 /**********************************************************************
41 * This file implements triangular matrix-vector multiplication using BLAS
42 **********************************************************************/
43 
44 // trmv/hemv specialization
45 
46 template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
48  triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,StorageOrder,BuiltIn> {};
49 
50 #define EIGEN_MKL_TRMV_SPECIALIZE(Scalar) \
51 template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
52 struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor,Specialized> { \
53  static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
54  const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
55  triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor>::run( \
56  _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
57  } \
58 }; \
59 template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
60 struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor,Specialized> { \
61  static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
62  const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
63  triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor>::run( \
64  _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
65  } \
66 };
67 
72 
73 // implements col-major: res += alpha * op(triangular) * vector
74 #define EIGEN_MKL_TRMV_CM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
75 template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
76 struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor> { \
77  enum { \
78  IsLower = (Mode&Lower) == Lower, \
79  SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
80  IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
81  IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
82  LowUp = IsLower ? Lower : Upper \
83  }; \
84  static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
85  const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
86  { \
87  if (ConjLhs || IsZeroDiag) { \
88  triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor,BuiltIn>::run( \
89  _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
90  return; \
91  }\
92  Index size = (std::min)(_rows,_cols); \
93  Index rows = IsLower ? _rows : size; \
94  Index cols = IsLower ? size : _cols; \
95 \
96  typedef VectorX##EIGPREFIX VectorRhs; \
97  EIGTYPE *x, *y;\
98 \
99 /* Set x*/ \
100  Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
101  VectorRhs x_tmp; \
102  if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
103  x = x_tmp.data(); \
104 \
105 /* Square part handling */\
106 \
107  char trans, uplo, diag; \
108  MKL_INT m, n, lda, incx, incy; \
109  EIGTYPE const *a; \
110  MKLTYPE alpha_, beta_; \
111  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
112  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
113 \
114 /* Set m, n */ \
115  n = (MKL_INT)size; \
116  lda = lhsStride; \
117  incx = 1; \
118  incy = resIncr; \
119 \
120 /* Set uplo, trans and diag*/ \
121  trans = 'N'; \
122  uplo = IsLower ? 'L' : 'U'; \
123  diag = IsUnitDiag ? 'U' : 'N'; \
124 \
125 /* call ?TRMV*/ \
126  MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
127 \
128 /* Add op(a_tr)rhs into res*/ \
129  MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
130 /* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
131  if (size<(std::max)(rows,cols)) { \
132  typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
133  if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
134  x = x_tmp.data(); \
135  if (size<rows) { \
136  y = _res + size*resIncr; \
137  a = _lhs + size; \
138  m = rows-size; \
139  n = size; \
140  } \
141  else { \
142  x += size; \
143  y = _res; \
144  a = _lhs + size*lda; \
145  m = size; \
146  n = cols-size; \
147  } \
148  MKLPREFIX##gemv(&trans, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
149  } \
150  } \
151 };
152 
153 EIGEN_MKL_TRMV_CM(double, double, d, d)
154 EIGEN_MKL_TRMV_CM(dcomplex, MKL_Complex16, cd, z)
155 EIGEN_MKL_TRMV_CM(float, float, f, s)
156 EIGEN_MKL_TRMV_CM(scomplex, MKL_Complex8, cf, c)
157 
158 // implements row-major: res += alpha * op(triangular) * vector
159 #define EIGEN_MKL_TRMV_RM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
160 template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
161 struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor> { \
162  enum { \
163  IsLower = (Mode&Lower) == Lower, \
164  SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
165  IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
166  IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
167  LowUp = IsLower ? Lower : Upper \
168  }; \
169  static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
170  const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
171  { \
172  if (IsZeroDiag) { \
173  triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor,BuiltIn>::run( \
174  _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
175  return; \
176  }\
177  Index size = (std::min)(_rows,_cols); \
178  Index rows = IsLower ? _rows : size; \
179  Index cols = IsLower ? size : _cols; \
180 \
181  typedef VectorX##EIGPREFIX VectorRhs; \
182  EIGTYPE *x, *y;\
183 \
184 /* Set x*/ \
185  Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
186  VectorRhs x_tmp; \
187  if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
188  x = x_tmp.data(); \
189 \
190 /* Square part handling */\
191 \
192  char trans, uplo, diag; \
193  MKL_INT m, n, lda, incx, incy; \
194  EIGTYPE const *a; \
195  MKLTYPE alpha_, beta_; \
196  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
197  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
198 \
199 /* Set m, n */ \
200  n = (MKL_INT)size; \
201  lda = lhsStride; \
202  incx = 1; \
203  incy = resIncr; \
204 \
205 /* Set uplo, trans and diag*/ \
206  trans = ConjLhs ? 'C' : 'T'; \
207  uplo = IsLower ? 'U' : 'L'; \
208  diag = IsUnitDiag ? 'U' : 'N'; \
209 \
210 /* call ?TRMV*/ \
211  MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
212 \
213 /* Add op(a_tr)rhs into res*/ \
214  MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
215 /* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
216  if (size<(std::max)(rows,cols)) { \
217  typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
218  if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
219  x = x_tmp.data(); \
220  if (size<rows) { \
221  y = _res + size*resIncr; \
222  a = _lhs + size*lda; \
223  m = rows-size; \
224  n = size; \
225  } \
226  else { \
227  x += size; \
228  y = _res; \
229  a = _lhs + size; \
230  m = size; \
231  n = cols-size; \
232  } \
233  MKLPREFIX##gemv(&trans, &n, &m, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
234  } \
235  } \
236 };
237 
238 EIGEN_MKL_TRMV_RM(double, double, d, d)
239 EIGEN_MKL_TRMV_RM(dcomplex, MKL_Complex16, cd, z)
240 EIGEN_MKL_TRMV_RM(float, float, f, s)
241 EIGEN_MKL_TRMV_RM(scomplex, MKL_Complex8, cf, c)
242 
243 } // end namespase internal
244 
245 } // end namespace Eigen
246 
247 #endif // EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
Definition: LDLT.h:16
#define EIGEN_MKL_TRMV_SPECIALIZE(Scalar)
#define EIGEN_MKL_TRMV_RM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX)
#define EIGEN_MKL_TRMV_CM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX)


tuw_aruco
Author(s): Lukas Pfeifhofer
autogenerated on Mon Feb 28 2022 23:58:05