10 #ifndef EIGEN_REAL_QZ_H 11 #define EIGEN_REAL_QZ_H 57 template<
typename _MatrixType>
class RealQZ 68 typedef typename MatrixType::Scalar
Scalar;
70 typedef typename MatrixType::Index
Index;
104 RealQZ(
const MatrixType& A,
const MatrixType& B,
bool computeQZ =
true) :
105 m_S(A.rows(),A.cols()),
106 m_T(A.rows(),A.cols()),
107 m_Q(A.rows(),A.cols()),
108 m_Z(A.rows(),A.cols()),
160 RealQZ&
compute(
const MatrixType& A,
const MatrixType& B,
bool computeQZ =
true);
211 void step(Index f, Index l, Index iter);
216 template<
typename MatrixType>
225 m_T.template triangularView<StrictlyLower>().setZero();
228 m_S.applyOnTheLeft(
m_Q.adjoint());
231 m_Z = MatrixType::Identity(dim,dim);
233 for (
Index j=0; j<=dim-3; j++) {
234 for (
Index i=dim-1; i>=j+2; i--) {
237 if(
m_S.coeff(i,j) != 0)
241 m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.
adjoint());
242 m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.
adjoint());
246 m_Q.applyOnTheRight(i-1,i,G);
252 m_S.applyOnTheRight(i,i-1,G);
253 m_T.topRows(i).applyOnTheRight(i,i-1,G);
263 template<
typename MatrixType>
269 for (
Index j = 0; j < size; ++j)
271 m_normOfS +=
m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
272 m_normOfT +=
m_T.row(j).segment(j, size - j).cwiseAbs().sum();
278 template<
typename MatrixType>
296 template<
typename MatrixType>
310 template<
typename MatrixType>
322 Matrix2s STi =
m_T.template block<2,2>(i,i).
template triangularView<Upper>().
323 template solve<OnTheRight>(
m_S.template block<2,2>(i,i));
325 Scalar q = p*p + STi(1,0)*STi(0,1);
336 m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.
adjoint());
337 m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.
adjoint());
340 m_Q.applyOnTheRight(i,i+1,G);
343 m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
344 m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
360 template<
typename MatrixType>
365 for (
Index zz=z; zz<l; zz++)
368 Index firstColS = zz>f ? (zz-1) : zz;
370 m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.
adjoint());
371 m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.
adjoint());
375 m_Q.applyOnTheRight(zz,zz+1,G);
380 m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
381 m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
390 m_S.applyOnTheRight(l,l-1,G);
391 m_T.applyOnTheRight(l,l-1,G);
399 template<
typename MatrixType>
411 a11=
m_S.coeff(f+0,f+0), a12=
m_S.coeff(f+0,f+1),
412 a21=
m_S.coeff(f+1,f+0), a22=
m_S.coeff(f+1,f+1), a32=
m_S.coeff(f+2,f+1),
413 b12=
m_T.coeff(f+0,f+1),
416 a87=
m_S.coeff(l-1,l-2),
417 a98=
m_S.coeff(l-0,l-1),
423 x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
424 - a11*a21*b12*b11i*b11i*b22i;
425 y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
426 - a21*a21*b12*b11i*b11i*b22i;
427 z = a21*a32*b11i*b22i;
432 x =
m_S.coeff(f,f)/
m_T.coeff(f,f)-
m_S.coeff(l,l)/
m_T.coeff(l,l) +
m_S.coeff(l,l-1)*
m_T.coeff(l-1,l) /
433 (
m_T.coeff(l-1,l-1)*
m_T.coeff(l,l));
434 y =
m_S.coeff(f+1,f)/
m_T.coeff(f,f);
437 else if (iter>23 && !(iter%8))
440 x = internal::random<Scalar>(-1.0,1.0);
441 y = internal::random<Scalar>(-1.0,1.0);
442 z = internal::random<Scalar>(-1.0,1.0);
453 a11 =
m_S.coeff(f,f), a12 =
m_S.coeff(f,f+1),
454 a21 =
m_S.coeff(f+1,f), a22 =
m_S.coeff(f+1,f+1),
455 a32 =
m_S.coeff(f+2,f+1),
457 a88 =
m_S.coeff(l-1,l-1), a89 =
m_S.coeff(l-1,l),
458 a98 =
m_S.coeff(l,l-1), a99 =
m_S.coeff(l,l),
460 b11 =
m_T.coeff(f,f), b12 =
m_T.coeff(f,f+1),
461 b22 =
m_T.coeff(f+1,f+1),
463 b88 =
m_T.coeff(l-1,l-1), b89 =
m_T.coeff(l-1,l),
464 b99 =
m_T.coeff(l,l);
466 x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
467 + a12/b22 - (a11/b11)*(b12/b22);
468 y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
474 for (
Index k=f; k<=l-2; k++)
483 hr.makeHouseholderInPlace(tau, beta);
484 essential2 = hr.template bottomRows<2>();
489 m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau,
m_workspace.
data());
491 m_S.coeffRef(k+2,k-1) =
m_S.coeffRef(k+1,k-1) =
Scalar(0.0);
494 hr <<
m_T.coeff(k+2,k+2),
m_T.coeff(k+2,k),
m_T.coeff(k+2,k+1);
495 hr.makeHouseholderInPlace(tau, beta);
496 essential2 = hr.template bottomRows<2>();
498 Index lr = (std::min)(k+4,dim);
501 tmp =
m_S.template middleCols<2>(k).
topRows(lr) * essential2;
502 tmp +=
m_S.col(k+2).head(lr);
503 m_S.col(k+2).head(lr) -= tau*tmp;
504 m_S.template middleCols<2>(k).
topRows(lr) -= (tau*tmp) * essential2.adjoint();
506 tmp =
m_T.template middleCols<2>(k).
topRows(lr) * essential2;
507 tmp +=
m_T.col(k+2).head(lr);
508 m_T.col(k+2).head(lr) -= tau*tmp;
509 m_T.template middleCols<2>(k).
topRows(lr) -= (tau*tmp) * essential2.adjoint();
515 tmp = essential2.adjoint()*(
m_Z.template middleRows<2>(k));
517 m_Z.row(k+2) -= tau*tmp;
518 m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
520 m_T.coeffRef(k+2,k) =
m_T.coeffRef(k+2,k+1) =
Scalar(0.0);
524 m_S.applyOnTheRight(k+1,k,G);
525 m_T.applyOnTheRight(k+1,k,G);
532 x =
m_S.coeff(k+1,k);
533 y =
m_S.coeff(k+2,k);
535 z =
m_S.coeff(k+3,k);
543 m_Q.applyOnTheRight(l-1,l,G);
548 m_S.applyOnTheRight(l,l-1,G);
549 m_T.applyOnTheRight(l,l-1,G);
556 template<
typename MatrixType>
560 const Index dim = A_in.cols();
563 && B_in.rows()==dim && B_in.cols()==dim
564 &&
"Need square matrices of the same dimension");
585 if (f>0)
m_S.coeffRef(f,f-1) =
Scalar(0.0);
611 step(f,l, local_iter);
624 #endif //EIGEN_REAL_QZ Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > EigenvalueType
void pushDownZero(Index z, Index f, Index l)
Index findSmallSubdiagEntry(Index iu)
const MatrixType & matrixS() const
Returns matrix S in the QZ decomposition.
std::complex< typename NumTraits< Scalar >::Real > ComplexScalar
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Index iterations() const
Returns number of performed QR-like iterations.
EIGEN_STRONG_INLINE const Scalar * data() const
A matrix or vector expression mapping an existing array of data.
const MatrixType & matrixQR() const
Index findSmallDiagEntry(Index f, Index l)
RealQZ(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Rotation given by a cosine-sine pair.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
void step(Index f, Index l, Index iter)
JacobiRotation< Scalar > JRs
RealQZ & setMaxIterations(Index maxIters)
Matrix< Scalar, 3, 1 > Vector3s
RealQZ(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Constructor; computes real QZ decomposition of given matrices.
MatrixType::Scalar Scalar
EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
Matrix< Scalar, Dynamic, 1 > m_workspace
ColsBlockXpr rightCols(Index n)
HouseholderSequenceType householderQ() const
Matrix< Scalar, 2, 1 > Vector2s
const MatrixType & matrixZ() const
Returns matrix Z in the QZ decomposition.
ComputationInfo info() const
Reports whether previous computation was successful.
Matrix< Scalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > ColumnVectorType
Matrix< Scalar, 2, 2 > Matrix2s
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > abs() const
RowsBlockXpr topRows(Index n)
const MatrixType & matrixT() const
Returns matrix S in the QZ decomposition.
void splitOffTwoRows(Index i)
RealQZ & compute(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Computes QZ decomposition of given matrix.
void hessenbergTriangular()
const MatrixType & matrixQ() const
Returns matrix Q in the QZ decomposition.
JacobiRotation adjoint() const
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > sqrt() const
Performs a real QZ decomposition of a pair of square matrices.