11 #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H 12 #define EIGEN_HOUSEHOLDER_SEQUENCE_H 59 template<
typename VectorsType,
typename CoeffsType,
int S
ide>
62 typedef typename VectorsType::Scalar
Scalar;
63 typedef typename VectorsType::Index
Index;
68 ColsAtCompileTime = RowsAtCompileTime,
71 MaxColsAtCompileTime = MaxRowsAtCompileTime,
76 template<
typename VectorsType,
typename CoeffsType,
int S
ide>
81 typedef typename VectorsType::Index
Index;
82 static inline const EssentialVectorType
essentialVector(
const HouseholderSequenceType& h, Index k)
89 template<
typename VectorsType,
typename CoeffsType>
94 typedef typename VectorsType::Index
Index;
95 static inline const EssentialVectorType
essentialVector(
const HouseholderSequenceType& h, Index k)
106 typedef Matrix<
ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
107 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime>
Type;
113 :
public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
125 typedef typename VectorsType::Index
Index;
131 typename internal::conditional<NumTraits<Scalar>::IsComplex,
155 : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
162 : m_vectors(other.m_vectors),
163 m_coeffs(other.m_coeffs),
164 m_trans(other.m_trans),
165 m_length(other.m_length),
166 m_shift(other.m_shift)
174 Index
rows()
const {
return Side==
OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
180 Index
cols()
const {
return rows(); }
227 template<
typename DestType>
inline void evalTo(DestType& dst)
const 229 Matrix<Scalar, DestType::RowsAtCompileTime, 1,
231 evalTo(dst, workspace);
235 template<
typename Dest,
typename Workspace>
236 void evalTo(Dest& dst, Workspace& workspace)
const 238 workspace.resize(rows());
239 Index vecs = m_length;
244 dst.diagonal().setOnes();
245 dst.template triangularView<StrictlyUpper>().setZero();
246 for(Index k = vecs-1; k >= 0; --k)
248 Index cornerSize = rows() - k - m_shift;
250 dst.bottomRightCorner(cornerSize, cornerSize)
251 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
253 dst.bottomRightCorner(cornerSize, cornerSize)
254 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
257 dst.col(k).tail(rows()-k-1).setZero();
260 for(Index k = 0; k<cols()-vecs ; ++k)
261 dst.col(k).tail(rows()-k-1).setZero();
265 dst.setIdentity(rows(), rows());
266 for(Index k = vecs-1; k >= 0; --k)
268 Index cornerSize = rows() - k - m_shift;
270 dst.bottomRightCorner(cornerSize, cornerSize)
271 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
273 dst.bottomRightCorner(cornerSize, cornerSize)
274 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
283 applyThisOnTheRight(dst, workspace);
287 template<
typename Dest,
typename Workspace>
290 workspace.resize(dst.rows());
291 for(Index k = 0; k < m_length; ++k)
293 Index actual_k = m_trans ? m_length-k-1 : k;
294 dst.rightCols(rows()-m_shift-actual_k)
295 .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
303 applyThisOnTheLeft(dst, workspace);
307 template<
typename Dest,
typename Workspace>
310 workspace.resize(dst.cols());
311 for(Index k = 0; k < m_length; ++k)
313 Index actual_k = m_trans ? k : m_length-k-1;
314 dst.bottomRows(rows()-m_shift-actual_k)
315 .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
326 template<
typename OtherDerived>
331 applyThisOnTheLeft(res);
369 Index
length()
const {
return m_length; }
370 Index
shift()
const {
return m_shift; }
391 bool trans()
const {
return m_trans; }
408 template<
typename OtherDerived,
typename VectorsType,
typename CoeffsType,
int S
ide>
421 template<
typename VectorsType,
typename CoeffsType>
433 template<
typename VectorsType,
typename CoeffsType>
441 #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H HouseholderSequence< VectorsType, CoeffsType, OnTheRight > HouseholderSequenceType
HouseholderSequence< VectorsType, CoeffsType > householderSequence(const VectorsType &v, const CoeffsType &h)
Convenience function for constructing a Householder sequence.
Index cols() const
Number of columns of transformation viewed as a matrix.
HouseholderSequence< typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename VectorsType::ConjugateReturnType >::type, VectorsType >::type, typename internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::remove_all< typename CoeffsType::ConjugateReturnType >::type, CoeffsType >::type, Side > ConjugateReturnType
ConjugateReturnType inverse() const
Inverse of the Householder sequence (equals the adjoint).
Matrix< ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime > Type
HouseholderSequence & setLength(Index length)
Sets the length of the Householder sequence.
internal::hseq_side_dependent_impl< VectorsType, CoeffsType, Side >::EssentialVectorType EssentialVectorType
Expression of the transpose of a matrix.
HouseholderSequence(const HouseholderSequence &other)
Copy constructor.
bool trans() const
Returns the transpose flag.
ConjugateReturnType adjoint() const
Adjoint (conjugate transpose) of the Householder sequence.
VectorsType::Scalar Scalar
HouseholderSequence(const VectorsType &v, const CoeffsType &h)
Constructor.
const internal::permut_matrix_product_retval< PermutationDerived, Derived, OnTheRight > operator*(const MatrixBase< Derived > &matrix, const PermutationBase< PermutationDerived > &permutation)
Block< const VectorsType, Dynamic, 1 > EssentialVectorType
Sequence of Householder reflections acting on subspaces with decreasing size.
NewType cast(const OldType &x)
Transpose< Block< const VectorsType, 1, Dynamic > > EssentialVectorType
void applyThisOnTheLeft(Dest &dst, Workspace &workspace) const
static const EssentialVectorType essentialVector(const HouseholderSequenceType &h, Index k)
HouseholderSequence< VectorsType, CoeffsType, OnTheRight > rightHouseholderSequence(const VectorsType &v, const CoeffsType &h)
Convenience function for constructing a Householder sequence.
HouseholderSequence & setTrans(bool trans)
Sets the transpose flag.
ConjugateReturnType conjugate() const
void evalTo(DestType &dst) const
void evalTo(Dest &dst, Workspace &workspace) const
VectorsType::Nested m_vectors
Index length() const
Returns the length of the Householder sequence.
CoeffsType::Nested m_coeffs
HouseholderSequence & setShift(Index shift)
Sets the shift of the Householder sequence.
VectorsType::StorageKind StorageKind
internal::matrix_type_times_scalar_type< Scalar, OtherDerived >::Type operator*(const MatrixBase< OtherDerived > &other) const
Computes the product of a Householder sequence with a matrix.
const EssentialVectorType essentialVector(Index k) const
Essential part of a Householder vector.
Expression of a fixed-size or dynamic-size block.
void applyThisOnTheRight(Dest &dst, Workspace &workspace) const
scalar_product_traits< OtherScalarType, typename MatrixType::Scalar >::ReturnType ResultScalar
internal::conditional< NumTraits< Scalar >::IsComplex, const CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, const Derived >, const Derived &>::type ConjugateReturnType
const T::Scalar * extract_data(const T &m)
The matrix class, also used for vectors and row-vectors.
void applyThisOnTheRight(Dest &dst) const
Index shift() const
Returns the shift of the Householder sequence.
HouseholderSequence< VectorsType, CoeffsType, OnTheLeft > HouseholderSequenceType
Base class for all dense matrices, vectors, and expressions.
static const EssentialVectorType essentialVector(const HouseholderSequenceType &h, Index k)
HouseholderSequence transpose() const
Transpose of the Householder sequence.
ConjugateReturnType conjugate() const
Complex conjugate of the Householder sequence.
void applyThisOnTheLeft(Dest &dst) const
Index rows() const
Number of rows of transformation viewed as a matrix.
internal::traits< HouseholderSequence >::Scalar Scalar