33 #define HC_REGULAR false 34 #define CC_REGULAR false 71 double x = (c1.
xc + c2.
xc) / 2;
72 double y = (c1.
yc + c2.
yc) / 2;
103 TT_tangent_circles(c1, c2, q2);
108 return (*cstart)->hc_turn_length(**q1) + (*cend)->hc_turn_length(**q3);
128 double delta_x = 0.5 * distance;
129 double delta_y = 0.0;
164 TcT_tangent_circles(c1, c2, q);
167 return (*cstart)->rs_turn_length(**q) + (*cend)->rs_turn_length(**q);
183 return distance <= 4 * fabs(c1.
kappa_inv);
189 double theta = angle;
191 double delta_x = 0.5 * distance;
192 double delta_y =
sqrt(
pow(r, 2) -
pow(delta_x, 2));
200 TcT_tangent_circles(c1, tgt1, q1);
201 TcT_tangent_circles(tgt1, c2, q2);
202 TcT_tangent_circles(c1, tgt2, q3);
203 TcT_tangent_circles(tgt2, c2, q4);
210 TcTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
219 double length1 = (*cstart)->rs_turn_length(*qa) + middle1->
rs_turn_length(*qb) + (*cend)->rs_turn_length(*qb);
220 double length2 = (*cstart)->rs_turn_length(*qc) + middle2->
rs_turn_length(*qd) + (*cend)->rs_turn_length(*qd);
221 if (length1 < length2)
241 return numeric_limits<double>::max();
255 return (distance <= 2 * parent_->radius_ + 2 * fabs(c1.
kappa_inv)) &&
262 double theta = angle;
264 double r2 = 2 * parent_->
radius_;
265 double delta_x = (
pow(r1, 2) +
pow(distance, 2) -
pow(r2, 2)) / (2 * distance);
266 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
274 TcT_tangent_circles(c1, tgt1, q1);
275 TT_tangent_circles(tgt1, c2, q2);
276 TcT_tangent_circles(c1, tgt2, q3);
277 TT_tangent_circles(tgt2, c2, q4);
284 TcTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
297 if (length1 < length2)
321 return numeric_limits<double>::max();
335 return (distance <= 2 * parent_->radius_ + 2 * fabs(c1.
kappa_inv)) &&
342 double theta = angle;
343 double r1 = 2 * parent_->
radius_;
345 double delta_x = (
pow(r1, 2) +
pow(distance, 2) -
pow(r2, 2)) / (2 * distance);
346 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
354 TT_tangent_circles(c1, tgt1, q1);
355 TcT_tangent_circles(tgt1, c2, q2);
356 TT_tangent_circles(c1, tgt2, q3);
357 TcT_tangent_circles(tgt2, c2, q4);
364 TTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
377 if (length1 < length2)
401 return numeric_limits<double>::max();
415 return distance >= 2 * parent_->
radius_;
433 return TiST_exists(c1, c2) || TeST_exists(c1, c2);
447 theta = angle +
alpha;
455 theta = angle -
alpha;
463 theta = angle -
alpha;
471 theta = angle +
alpha;
519 TiST_tangent_circles(c1, c2, q2, q3);
524 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->hc_turn_length(**q4);
530 TeST_tangent_circles(c1, c2, q2, q3);
535 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->hc_turn_length(**q4);
541 if (TiST_exists(c1, c2))
543 return TiST_path(c1, c2, cstart, cend, q1, q2, q3, q4);
545 if (TeST_exists(c1, c2))
547 return TeST_path(c1, c2, cstart, cend, q1, q2, q3, q4);
549 return numeric_limits<double>::max();
582 return TiSTcT_exists(c1, c2) || TeSTcT_exists(c1, c2);
589 double theta = angle;
597 TiST_tangent_circles(c1, tgt1, q2, q3);
598 TcT_tangent_circles(tgt1, c2, q4);
605 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*ci)->hc_turn_length(**q4) +
606 (*cend)->rs_turn_length(**q4);
613 double theta = angle;
621 TeST_tangent_circles(c1, tgt1, q2, q3);
622 TcT_tangent_circles(tgt1, c2, q4);
629 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*ci)->hc_turn_length(**q4) +
630 (*cend)->rs_turn_length(**q4);
637 if (TiSTcT_exists(c1, c2))
639 return TiSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
641 if (TeSTcT_exists(c1, c2))
643 return TeSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
645 return numeric_limits<double>::max();
678 return TcTiST_exists(c1, c2) || TcTeST_exists(c1, c2);
685 double theta = angle;
693 TcT_tangent_circles(c1, tgt1, q1);
694 TiST_tangent_circles(tgt1, c2, q2, q3);
701 return (*cstart)->rs_turn_length(**q1) + (*ci)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
702 (*cend)->hc_turn_length(**q4);
709 double theta = angle;
717 TcT_tangent_circles(c1, tgt1, q1);
718 TeST_tangent_circles(tgt1, c2, q2, q3);
725 return (*cstart)->rs_turn_length(**q1) + (*ci)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
726 (*cend)->hc_turn_length(**q4);
733 if (TcTiST_exists(c1, c2))
735 return TcTiST_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
737 if (TcTeST_exists(c1, c2))
739 return TcTeST_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
741 return numeric_limits<double>::max();
774 return TcTiSTcT_exists(c1, c2) || TcTeSTcT_exists(c1, c2);
781 double theta = angle;
791 TcT_tangent_circles(c1, tgt1, q1);
792 TiST_tangent_circles(tgt1, tgt2, q2, q3);
793 TcT_tangent_circles(tgt2, c2, q4);
800 return (*cstart)->rs_turn_length(**q1) + (*ci1)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
801 (*ci2)->hc_turn_length(**q4) + (*cend)->rs_turn_length(**q4);
808 double theta = angle;
818 TcT_tangent_circles(c1, tgt1, q1);
819 TeST_tangent_circles(tgt1, tgt2, q2, q3);
820 TcT_tangent_circles(tgt2, c2, q4);
827 return (*cstart)->rs_turn_length(**q1) + (*ci1)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
828 (*ci2)->hc_turn_length(**q4) + (*cend)->rs_turn_length(**q4);
835 if (TcTiSTcT_exists(c1, c2))
837 return TcTiSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci1, ci2);
839 if (TcTeSTcT_exists(c1, c2))
841 return TcTeSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci1, ci2);
843 return numeric_limits<double>::max();
857 return (distance <= 4 * parent_->radius_ + 2 * fabs(c1.
kappa_inv));
863 double theta = angle;
864 double r1, r2, delta_x, delta_y, x, y;
867 if (distance < 4 * parent_->radius_ - 2 * fabs(c1.
kappa_inv))
869 delta_x = (distance + r1) / 2;
874 delta_x = (distance - r1) / 2;
888 TT_tangent_circles(c1, tgt1, q1);
889 TcT_tangent_circles(tgt1, tgt2, q2);
890 TT_tangent_circles(tgt2, c2, q3);
892 TT_tangent_circles(c1, tgt3, q4);
893 TcT_tangent_circles(tgt3, tgt4, q5);
894 TT_tangent_circles(tgt4, c2, q6);
902 TTcTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd, &qe, &qf);
903 HC_CC_Circle *start1, *start2, *end1, *end2, *middle1, *middle2, *middle3, *middle4;
921 if (length1 < length2)
933 delete start2,
delete end2,
delete middle3;
955 return numeric_limits<double>::max();
976 double theta = angle;
979 double delta_x = (
pow(r1, 2) +
pow(distance / 2, 2) -
pow(r2, 2)) / distance;
980 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
993 TcT_tangent_circles(c1, tgt1, q1);
994 TT_tangent_circles(tgt1, tgt2, q2);
995 TcT_tangent_circles(tgt2, c2, q3);
997 TcT_tangent_circles(c1, tgt3, q4);
998 TT_tangent_circles(tgt3, tgt4, q5);
999 TcT_tangent_circles(tgt4, c2, q6);
1006 TcTTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd, &qe, &qf);
1018 (*cend)->rs_turn_length(*qc);
1020 (*cend)->rs_turn_length(*qf);
1021 if (length1 < length2)
1049 return numeric_limits<double>::max();
1065 return distance <= 4 * parent_->
radius_;
1071 double theta = angle;
1072 double r = 2 * parent_->
radius_;
1073 double delta_x = 0.5 * distance;
1074 double delta_y =
sqrt(
pow(r, 2) -
pow(delta_x, 2));
1082 TT_tangent_circles(c1, tgt1, q1);
1083 TT_tangent_circles(tgt1, c2, q2);
1084 TT_tangent_circles(c1, tgt2, q3);
1085 TT_tangent_circles(tgt2, c2, q4);
1092 TTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
1093 HC_CC_Circle *start1, *start2, *end1, *end2, *middle1, *middle2;
1107 if (length1 < length2)
1135 return numeric_limits<double>::max();
1169 return TciST_exists(c1, c2) || TceST_exists(c1, c2);
1176 double delta_x1 = 0.0;
1183 theta = angle -
alpha;
1191 theta = angle +
alpha;
1199 theta = angle +
alpha;
1207 theta = angle -
alpha;
1216 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->hc_turn_length(**q3);
1223 double delta_x1 = 0.0;
1230 theta = angle +
alpha;
1238 theta = angle -
alpha;
1246 theta = angle -
alpha;
1254 theta = angle +
alpha;
1263 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->hc_turn_length(**q3);
1269 if (TciST_exists(c1, c2))
1271 return TciST_path(c1, c2, cstart, cend, q1, q2, q3);
1273 if (TceST_exists(c1, c2))
1275 return TceST_path(c1, c2, cstart, cend, q1, q2, q3);
1277 return numeric_limits<double>::max();
1311 return TiScT_exists(c1, c2) || TeScT_exists(c1, c2);
1320 double delta_x2 = 0.0;
1325 theta = angle +
alpha;
1333 theta = angle -
alpha;
1341 theta = angle -
alpha;
1349 theta = angle +
alpha;
1358 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->rs_turn_length(**q3);
1367 double delta_x2 = 0.0;
1372 theta = angle +
alpha;
1380 theta = angle -
alpha;
1388 theta = angle -
alpha;
1396 theta = angle +
alpha;
1405 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->rs_turn_length(**q3);
1411 if (TiScT_exists(c1, c2))
1413 return TiScT_path(c1, c2, cstart, cend, q1, q2, q3);
1415 if (TeScT_exists(c1, c2))
1417 return TeScT_path(c1, c2, cstart, cend, q1, q2, q3);
1419 return numeric_limits<double>::max();
1433 return distance > 2 * fabs(c1.
kappa_inv);
1451 return TciScT_exists(c1, c2) || TceScT_exists(c1, c2);
1458 double delta_x = 0.0;
1463 theta = angle -
alpha;
1471 theta = angle +
alpha;
1479 theta = angle +
alpha;
1487 theta = angle -
alpha;
1495 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->rs_turn_length(**q2);
1501 double theta = angle;
1502 double delta_x = 0.0;
1535 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->rs_turn_length(**q2);
1541 if (TciScT_exists(c1, c2))
1543 return TciScT_path(c1, c2, cstart, cend, q1, q2);
1545 if (TceScT_exists(c1, c2))
1547 return TceScT_path(c1, c2, cstart, cend, q1, q2);
1549 return numeric_limits<double>::max();
1555 HCpmpm_Reeds_Shepp_State_Space::HCpmpm_Reeds_Shepp_State_Space(
double kappa,
double sigma,
double discretization)
1557 , hcpmpm_reeds_shepp_{ unique_ptr<HCpmpm_Reeds_Shepp>(
new HCpmpm_Reeds_Shepp(
this)) }
1612 &qi1[hc_cc_rs::TT], &qi2[hc_cc_rs::TT], &qi3[hc_cc_rs::TT]);
1626 &qi2[hc_cc_rs::TcTcT], &ci1[hc_cc_rs::TcTcT]);
1633 &qi2[hc_cc_rs::TcTT], &ci1[hc_cc_rs::TcTT]);
1640 &qi2[hc_cc_rs::TTcT], &ci1[hc_cc_rs::TTcT]);
1647 &qi2[hc_cc_rs::TST], &qi3[hc_cc_rs::TST], &qi4[hc_cc_rs::TST]);
1653 c1, c2, &cstart[
hc_cc_rs::TSTcT], &cend[hc_cc_rs::TSTcT], &qi1[hc_cc_rs::TSTcT], &qi2[hc_cc_rs::TSTcT],
1654 &qi3[hc_cc_rs::TSTcT], &qi4[hc_cc_rs::TSTcT], &ci1[hc_cc_rs::TSTcT]);
1660 c1, c2, &cstart[
hc_cc_rs::TcTST], &cend[hc_cc_rs::TcTST], &qi1[hc_cc_rs::TcTST], &qi2[hc_cc_rs::TcTST],
1661 &qi3[hc_cc_rs::TcTST], &qi4[hc_cc_rs::TcTST], &ci1[hc_cc_rs::TcTST]);
1667 c1, c2, &cstart[
hc_cc_rs::TcTSTcT], &cend[hc_cc_rs::TcTSTcT], &qi1[hc_cc_rs::TcTSTcT], &qi2[hc_cc_rs::TcTSTcT],
1668 &qi3[hc_cc_rs::TcTSTcT], &qi4[hc_cc_rs::TcTSTcT], &ci1[hc_cc_rs::TcTSTcT], &ci2[hc_cc_rs::TcTSTcT]);
1674 c1, c2, &cstart[
hc_cc_rs::TTcTT], &cend[hc_cc_rs::TTcTT], &qi1[hc_cc_rs::TTcTT], &qi2[hc_cc_rs::TTcTT],
1675 &qi3[hc_cc_rs::TTcTT], &ci1[hc_cc_rs::TTcTT], &ci2[hc_cc_rs::TTcTT]);
1681 c1, c2, &cstart[
hc_cc_rs::TcTTcT], &cend[hc_cc_rs::TcTTcT], &qi1[hc_cc_rs::TcTTcT], &qi2[hc_cc_rs::TcTTcT],
1682 &ci1[hc_cc_rs::TcTTcT], &ci2[hc_cc_rs::TcTTcT]);
1690 &qi2[hc_cc_rs::TTT], &qi3[hc_cc_rs::TTT], &ci1[hc_cc_rs::TTT]);
1697 &qi2[hc_cc_rs::TcST], &qi3[hc_cc_rs::TcST]);
1704 &qi2[hc_cc_rs::TScT], &qi3[hc_cc_rs::TScT]);
1710 &qi1[hc_cc_rs::TcScT], &qi2[hc_cc_rs::TcScT]);
1717 qi3[best_path], qi4[best_path], cstart[best_path], cend[best_path], ci1[best_path],
1718 ci2[best_path], length[best_path]);
1758 HC_CC_RS_Path *
path[] = {
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
1759 nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr };
1761 double lg[] = { numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1762 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1763 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1764 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1765 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1766 numeric_limits<double>::max() };
1768 for (
int i = 0; i < 4; i++)
1771 if (i == 0 && state1.
kappa < 0)
1773 else if (i == 1 && state1.
kappa > 0)
1775 else if (i == 2 && state1.
kappa < 0)
1777 else if (i == 3 && state1.
kappa > 0)
1779 for (
int j = 0; j < 4; j++)
1782 if (j == 0 && state2.
kappa < 0)
1784 else if (j == 1 && state2.
kappa > 0)
1786 else if (j == 2 && state2.
kappa < 0)
1788 else if (j == 3 && state2.
kappa > 0)
1791 if (path[4 * i + j])
1793 lg[4 * i + j] = path[4 * i + j]->
length;
1816 for (
int i = 0; i < 4; i++)
1818 delete start_circle[i];
1819 delete end_circle[i];
1821 for (
int i = 0; i < 16; i++)
1828 return path[best_path];
1841 vector<Control> hc_rs_controls;
1842 hc_rs_controls.reserve(8);
1937 return hc_rs_controls;
bool TcTiSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
std::vector< Control > get_controls(const State &state1, const State &state2) const
Returns controls of the shortest path from state1 to state2.
bool TST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double mu_
Angle between a configuration on the hc-/cc-circle and the tangent to the circle at that position...
const int nb_hc_cc_rs_paths
double get_epsilon()
Return value of epsilon.
bool left
Turning direction: left/right.
double TTcTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
double center_distance(const HC_CC_Circle &c1, const HC_CC_Circle &c2)
Cartesian distance between the centers of two circles.
double sin_mu
Sine and cosine of mu.
bool TTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
HC_CC_RS_Path * hcpmpm_circles_rs_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
Returns a sequence of turns and straight lines connecting the two circles c1 and c2.
double kappa_
Curvature, sharpness of clothoid.
void pointer_array_init(void *array[], int size)
Initialize an array with nullptr.
double TTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
void TTcTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, Configuration **q5, Configuration **q6) const
double TeST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
double cc_turn_length(const Configuration &q) const
Length of a cc-turn.
bool configuration_on_hc_cc_circle(const HC_CC_Circle &c, const Configuration &q)
Configuration on the circle?
bool TcTeSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
int array_index_min(double array[], int size)
Find index with minimal value in double array.
double TceScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
double radius
Radius of the outer circle.
double get_distance(const State &state1, const State &state2) const
Returns shortest path length from state1 to state2.
std::unique_ptr< HCpmpm_Reeds_Shepp > hcpmpm_reeds_shepp_
Pimpl Idiom: unique pointer on class with families.
double TcTST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
void hc_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a hc-turn.
double TT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
bool TcTST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double hc_turn_length(const Configuration &q) const
Length of a hc-turn.
double TcTSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
bool regular
Type of the circle: regular/irregular.
HC_CC_Circle_Param hc_cc_circle_param_
Parameters of a hc-/cc-circle.
double TSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double configuration_distance(const Configuration &q1, const Configuration &q2)
Cartesian distance between two configurations.
void cc_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a cc-turn.
void TTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
An implementation of hybrid curvature (HC) steer with either positive (p) or negative (n) max...
~HCpmpm_Reeds_Shepp_State_Space()
Destructor.
double TcTiSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
double TeScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
bool TceScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double radius_
Outer radius of a hc-/cc-circle.
bool TceST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void TcTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
TFSIMD_FORCE_INLINE tfScalar angle(const Quaternion &q1, const Quaternion &q2)
double TST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
bool TciST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
HC_CC_Circle * cstart
Start, end and intermediate circles.
double TcTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
double TcTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
void straight_controls(const Configuration &q1, const Configuration &q2, std::vector< Control > &controls)
Appends controls with a straight line.
double TcScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
bool TiST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double distance(double x0, double y0, double x1, double y1)
bool TcST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double theta
Orientation in rad between [0, 2*pi[.
void double_array_init(double array[], int size, double value)
Initialize an array with a given value.
bool TcScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TcTeST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double x
Position in x of the robot.
double TciScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
bool configuration_equal(const Configuration &q1, const Configuration &q2)
Are two configurations equal?
double kappa
Max. curvature, inverse of max. curvature, max. sharpness.
double length
Path length.
void TTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
double TiSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
INLINE Rall1d< T, V, S > asin(const Rall1d< T, V, S > &x)
bool TiSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci) const
void global_frame_change(double x, double y, double theta, double local_x, double local_y, double *global_x, double *global_y)
Transformation of (local_x, local_y) from local coordinate system to global one.
double TcST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
bool TeScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TcTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TciScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TiScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TcTeSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
double TceST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
bool forward
Driving direction: forwards/backwards.
HCpmpm_Reeds_Shepp(HCpmpm_Reeds_Shepp_State_Space *parent)
INLINE Rall1d< T, V, S > sqrt(const Rall1d< T, V, S > &arg)
double TcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q) const
HCpmpm_Reeds_Shepp_State_Space * parent_
void TcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q) const
hc_cc_rs::path_type type
Path type.
void TcTTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, Configuration **q5, Configuration **q6) const
Description of a kinematic car's state.
double TScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
void TiST_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2) const
double mu
Angle between the initial orientation and the tangent to the circle at the initial position...
bool TScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
INLINE Rall1d< T, V, S > pow(const Rall1d< T, V, S > &arg, double m)
HC_CC_Circle_Param rs_circle_param_
Parameter of a rs-circle.
double sin_mu_
Sine and cosine of mu.
bool TcTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void rs_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a rs-turn.
double TcTeST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double TciST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
bool TcTiST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void TT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q) const
bool TTcTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
INLINE Rall1d< T, V, S > atan2(const Rall1d< T, V, S > &y, const Rall1d< T, V, S > &x)
void TeST_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2) const
bool TcTTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TeST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void empty_controls(std::vector< Control > &controls)
Appends controls with 0 input.
double TiScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
double kappa
Curvature at position (x,y)
TFSIMD_FORCE_INLINE tfScalar length(const Quaternion &q)
Configuration start
Start configuration.
double TcTiST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double TeSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double xc
Center of the circle.
double TcTTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
void set_param(double _kappa, double _sigma, double _radius, double _mu, double _sin_mu, double _cos_mu, double _delta_min)
Set parameters.
double TiST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
double y
Position in y of the robot.
HC_CC_RS_Path * hcpmpm_reeds_shepp(const State &state1, const State &state2) const
Returns a sequence of turns and straight lines connecting a start and an end configuration.
double theta
Orientation of the robot.
Configuration * qi1
Intermediate configurations.
double rs_turn_length(const Configuration &q) const
Length of a rs-turn.
void TcTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
bool TcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TeSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TcTSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const