33 #define HC_REGULAR false 34 #define CC_REGULAR false 71 double x = (c1.
xc + c2.
xc) / 2;
72 double y = (c1.
yc + c2.
yc) / 2;
103 TT_tangent_circles(c1, c2, q2);
107 return (*cstart)->hc_turn_length(**q1) + (*cend)->cc_turn_length(**q2);
127 double delta_x = 0.5 * distance;
128 double delta_y = 0.0;
163 TcT_tangent_circles(c1, c2, q);
166 return (*cstart)->rs_turn_length(**q) + (*cend)->hc_turn_length(**q);
182 return distance <= 4 * fabs(c1.
kappa_inv);
188 double theta = angle;
190 double delta_x = 0.5 * distance;
191 double delta_y =
sqrt(
pow(r, 2) -
pow(delta_x, 2));
199 TcT_tangent_circles(c1, tgt1, q1);
200 TcT_tangent_circles(tgt1, c2, q2);
201 TcT_tangent_circles(c1, tgt2, q3);
202 TcT_tangent_circles(tgt2, c2, q4);
209 TcTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
218 double length1 = (*cstart)->rs_turn_length(*qa) + middle1->
rs_turn_length(*qb) + (*cend)->hc_turn_length(*qb);
219 double length2 = (*cstart)->rs_turn_length(*qc) + middle2->
rs_turn_length(*qd) + (*cend)->hc_turn_length(*qd);
220 if (length1 < length2)
240 return numeric_limits<double>::max();
260 double theta = angle;
262 double r2 = 2 * c2.
radius;
263 double delta_x = (
pow(r1, 2) +
pow(distance, 2) -
pow(r2, 2)) / (2 * distance);
264 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
272 TcT_tangent_circles(c1, tgt1, q1);
273 TT_tangent_circles(tgt1, c2, q2);
274 TcT_tangent_circles(c1, tgt2, q3);
275 TT_tangent_circles(tgt2, c2, q4);
282 TcTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
291 double length1 = (*cstart)->rs_turn_length(*qa) + middle1->
hc_turn_length(*qa) + (*cend)->cc_turn_length(*qb);
292 double length2 = (*cstart)->rs_turn_length(*qc) + middle2->
hc_turn_length(*qc) + (*cend)->cc_turn_length(*qd);
293 if (length1 < length2)
313 return numeric_limits<double>::max();
333 double theta = angle;
334 double r1 = 2 * c2.
radius;
336 double delta_x = (
pow(r1, 2) +
pow(distance, 2) -
pow(r2, 2)) / (2 * distance);
337 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
345 TT_tangent_circles(c1, tgt1, q1);
346 TcT_tangent_circles(tgt1, c2, q2);
347 TT_tangent_circles(c1, tgt2, q3);
348 TcT_tangent_circles(tgt2, c2, q4);
355 TTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
368 if (length1 < length2)
392 return numeric_limits<double>::max();
406 return (distance >= 2 * c2.
radius);
424 return TiST_exists(c1, c2) || TeST_exists(c1, c2);
438 theta = angle +
alpha;
446 theta = angle -
alpha;
454 theta = angle -
alpha;
462 theta = angle +
alpha;
510 TiST_tangent_circles(c1, c2, q2, q3);
514 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->cc_turn_length(**q3);
520 TeST_tangent_circles(c1, c2, q2, q3);
524 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->cc_turn_length(**q3);
530 if (TiST_exists(c1, c2))
532 return TiST_path(c1, c2, cstart, cend, q1, q2, q3);
534 if (TeST_exists(c1, c2))
536 return TeST_path(c1, c2, cstart, cend, q1, q2, q3);
538 return numeric_limits<double>::max();
571 return TiSTcT_exists(c1, c2) || TeSTcT_exists(c1, c2);
578 double theta = angle;
586 TiST_tangent_circles(c1, tgt1, q2, q3);
587 TcT_tangent_circles(tgt1, c2, q4);
594 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*ci)->hc_turn_length(**q4) +
595 (*cend)->hc_turn_length(**q4);
602 double theta = angle;
610 TeST_tangent_circles(c1, tgt1, q2, q3);
611 TcT_tangent_circles(tgt1, c2, q4);
618 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*ci)->hc_turn_length(**q4) +
619 (*cend)->hc_turn_length(**q4);
626 if (TiSTcT_exists(c1, c2))
628 return TiSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
630 if (TeSTcT_exists(c1, c2))
632 return TeSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci);
634 return numeric_limits<double>::max();
667 return TcTiST_exists(c1, c2) || TcTeST_exists(c1, c2);
673 double theta = angle;
681 TcT_tangent_circles(c1, tgt1, q1);
682 TiST_tangent_circles(tgt1, c2, q2, q3);
688 return (*cstart)->rs_turn_length(**q1) + (*ci)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
689 (*cend)->cc_turn_length(**q3);
695 double theta = angle;
703 TcT_tangent_circles(c1, tgt1, q1);
704 TeST_tangent_circles(tgt1, c2, q2, q3);
710 return (*cstart)->rs_turn_length(**q1) + (*ci)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
711 (*cend)->cc_turn_length(**q3);
717 if (TcTiST_exists(c1, c2))
719 return TcTiST_path(c1, c2, cstart, cend, q1, q2, q3, ci);
721 if (TcTeST_exists(c1, c2))
723 return TcTeST_path(c1, c2, cstart, cend, q1, q2, q3, ci);
725 return numeric_limits<double>::max();
758 return TcTiSTcT_exists(c1, c2) || TcTeSTcT_exists(c1, c2);
765 double theta = angle;
775 TcT_tangent_circles(c1, tgt1, q1);
776 TiST_tangent_circles(tgt1, tgt2, q2, q3);
777 TcT_tangent_circles(tgt2, c2, q4);
784 return (*cstart)->rs_turn_length(**q1) + (*ci1)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
785 (*ci2)->hc_turn_length(**q4) + (*cend)->hc_turn_length(**q4);
792 double theta = angle;
802 TcT_tangent_circles(c1, tgt1, q1);
803 TeST_tangent_circles(tgt1, tgt2, q2, q3);
804 TcT_tangent_circles(tgt2, c2, q4);
811 return (*cstart)->rs_turn_length(**q1) + (*ci1)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) +
812 (*ci2)->hc_turn_length(**q4) + (*cend)->hc_turn_length(**q4);
819 if (TcTiSTcT_exists(c1, c2))
821 return TcTiSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci1, ci2);
823 if (TcTeSTcT_exists(c1, c2))
825 return TcTeSTcT_path(c1, c2, cstart, cend, q1, q2, q3, q4, ci1, ci2);
827 return numeric_limits<double>::max();
847 double theta = angle;
848 double r1, r2, delta_x, delta_y, x, y;
853 delta_x = (distance + r1) / 2;
858 delta_x = (distance - r1) / 2;
872 TT_tangent_circles(c1, tgt1, q1);
873 TcT_tangent_circles(tgt1, tgt2, q2);
874 TT_tangent_circles(tgt2, c2, q3);
876 TT_tangent_circles(c1, tgt3, q4);
877 TcT_tangent_circles(tgt3, tgt4, q5);
878 TT_tangent_circles(tgt4, c2, q6);
886 TTcTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd, &qe, &qf);
887 HC_CC_Circle *start1, *start2, *middle1, *middle2, *middle3, *middle4;
900 (*cend)->cc_turn_length(*qc);
902 (*cend)->cc_turn_length(*qf);
903 if (length1 < length2)
936 return numeric_limits<double>::max();
956 double theta = angle;
959 double delta_x = (
pow(r1, 2) +
pow(distance / 2, 2) -
pow(r2, 2)) / distance;
960 double delta_y =
sqrt(
pow(r1, 2) -
pow(delta_x, 2));
973 TcT_tangent_circles(c1, tgt1, q1);
974 TT_tangent_circles(tgt1, tgt2, q2);
975 TcT_tangent_circles(tgt2, c2, q3);
977 TcT_tangent_circles(c1, tgt3, q4);
978 TT_tangent_circles(tgt3, tgt4, q5);
979 TcT_tangent_circles(tgt4, c2, q6);
986 TcTTcT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd, &qe, &qf);
998 (*cend)->hc_turn_length(*qc);
1000 (*cend)->hc_turn_length(*qf);
1001 if (length1 < length2)
1029 return numeric_limits<double>::max();
1045 return distance <= 4 * c2.
radius;
1051 double theta = angle;
1052 double r = 2 * c2.
radius;
1053 double delta_x = 0.5 * distance;
1054 double delta_y =
sqrt(
pow(r, 2) -
pow(delta_x, 2));
1062 TT_tangent_circles(c1, tgt1, q1);
1063 TT_tangent_circles(tgt1, c2, q2);
1064 TT_tangent_circles(c1, tgt2, q3);
1065 TT_tangent_circles(tgt2, c2, q4);
1072 TTT_tangent_circles(c1, c2, &qa, &qb, &qc, &qd);
1085 if (length1 < length2)
1109 return numeric_limits<double>::max();
1141 return TciST_exists(c1, c2) || TceST_exists(c1, c2);
1148 double delta_x1 = 0.0;
1155 theta = angle -
alpha;
1163 theta = angle +
alpha;
1171 theta = angle +
alpha;
1179 theta = angle -
alpha;
1187 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->cc_turn_length(**q2);
1194 double delta_x1 = 0.0;
1201 theta = angle +
alpha;
1209 theta = angle -
alpha;
1217 theta = angle -
alpha;
1225 theta = angle +
alpha;
1233 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->cc_turn_length(**q2);
1239 if (TciST_exists(c1, c2))
1241 return TciST_path(c1, c2, cstart, cend, q1, q2);
1243 if (TceST_exists(c1, c2))
1245 return TceST_path(c1, c2, cstart, cend, q1, q2);
1247 return numeric_limits<double>::max();
1279 return TiScT_exists(c1, c2) || TeScT_exists(c1, c2);
1288 double delta_x2 = 0.0;
1293 theta = angle +
alpha;
1301 theta = angle -
alpha;
1309 theta = angle -
alpha;
1317 theta = angle +
alpha;
1326 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->hc_turn_length(**q3);
1335 double delta_x2 = 0.0;
1340 theta = angle +
alpha;
1348 theta = angle -
alpha;
1356 theta = angle -
alpha;
1364 theta = angle +
alpha;
1373 return (*cstart)->hc_turn_length(**q1) +
configuration_distance(**q2, **q3) + (*cend)->hc_turn_length(**q3);
1379 if (TiScT_exists(c1, c2))
1381 return TiScT_path(c1, c2, cstart, cend, q1, q2, q3);
1383 if (TeScT_exists(c1, c2))
1385 return TeScT_path(c1, c2, cstart, cend, q1, q2, q3);
1387 return numeric_limits<double>::max();
1401 return distance > 2 * fabs(c2.
kappa_inv);
1419 return TciScT_exists(c1, c2) || TceScT_exists(c1, c2);
1426 double delta_x = 0.0;
1431 theta = angle -
alpha;
1439 theta = angle +
alpha;
1447 theta = angle +
alpha;
1455 theta = angle -
alpha;
1463 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->hc_turn_length(**q2);
1469 double delta_x = 0.0;
1471 double theta = angle;
1503 return (*cstart)->rs_turn_length(**q1) +
configuration_distance(**q1, **q2) + (*cend)->hc_turn_length(**q2);
1509 if (TciScT_exists(c1, c2))
1511 return TciScT_path(c1, c2, cstart, cend, q1, q2);
1513 if (TceScT_exists(c1, c2))
1515 return TceScT_path(c1, c2, cstart, cend, q1, q2);
1517 return numeric_limits<double>::max();
1523 HCpm0_Reeds_Shepp_State_Space::HCpm0_Reeds_Shepp_State_Space(
double kappa,
double sigma,
double discretization)
1525 , hcpm0_reeds_shepp_{ unique_ptr<HCpm0_Reeds_Shepp>(
new HCpm0_Reeds_Shepp(
this)) }
1578 &qi1[hc_cc_rs::TT], &qi2[hc_cc_rs::TT]);
1592 &qi2[hc_cc_rs::TcTcT], &ci1[hc_cc_rs::TcTcT]);
1599 &qi2[hc_cc_rs::TcTT], &ci1[hc_cc_rs::TcTT]);
1606 &qi2[hc_cc_rs::TTcT], &ci1[hc_cc_rs::TTcT]);
1612 &qi1[hc_cc_rs::TST], &qi2[hc_cc_rs::TST], &qi3[hc_cc_rs::TST]);
1618 c1, c2, &cstart[
hc_cc_rs::TSTcT], &cend[hc_cc_rs::TSTcT], &qi1[hc_cc_rs::TSTcT], &qi2[hc_cc_rs::TSTcT],
1619 &qi3[hc_cc_rs::TSTcT], &qi4[hc_cc_rs::TSTcT], &ci1[hc_cc_rs::TSTcT]);
1626 &qi2[hc_cc_rs::TcTST], &qi3[hc_cc_rs::TcTST], &ci1[hc_cc_rs::TcTST]);
1632 c1, c2, &cstart[
hc_cc_rs::TcTSTcT], &cend[hc_cc_rs::TcTSTcT], &qi1[hc_cc_rs::TcTSTcT], &qi2[hc_cc_rs::TcTSTcT],
1633 &qi3[hc_cc_rs::TcTSTcT], &qi4[hc_cc_rs::TcTSTcT], &ci1[hc_cc_rs::TcTSTcT], &ci2[hc_cc_rs::TcTSTcT]);
1639 c1, c2, &cstart[
hc_cc_rs::TTcTT], &cend[hc_cc_rs::TTcTT], &qi1[hc_cc_rs::TTcTT], &qi2[hc_cc_rs::TTcTT],
1640 &qi3[hc_cc_rs::TTcTT], &ci1[hc_cc_rs::TTcTT], &ci2[hc_cc_rs::TTcTT]);
1646 c1, c2, &cstart[
hc_cc_rs::TcTTcT], &cend[hc_cc_rs::TcTTcT], &qi1[hc_cc_rs::TcTTcT], &qi2[hc_cc_rs::TcTTcT],
1647 &ci1[hc_cc_rs::TcTTcT], &ci2[hc_cc_rs::TcTTcT]);
1654 &qi1[hc_cc_rs::TTT], &qi2[hc_cc_rs::TTT], &ci1[hc_cc_rs::TTT]);
1660 &qi1[hc_cc_rs::TcST], &qi2[hc_cc_rs::TcST]);
1667 &qi2[hc_cc_rs::TScT], &qi3[hc_cc_rs::TScT]);
1673 &qi1[hc_cc_rs::TcScT], &qi2[hc_cc_rs::TcScT]);
1680 qi3[best_path], qi4[best_path], cstart[best_path], cend[best_path], ci1[best_path],
1681 ci2[best_path], length[best_path]);
1720 HC_CC_RS_Path *
path[] = {
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
1721 nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr };
1723 double lg[] = { numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1724 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1725 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1726 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1727 numeric_limits<double>::max(), numeric_limits<double>::max(), numeric_limits<double>::max(),
1728 numeric_limits<double>::max() };
1730 for (
int i = 0; i < 4; i++)
1733 if (i == 0 && state1.
kappa < 0)
1735 else if (i == 1 && state1.
kappa > 0)
1737 else if (i == 2 && state1.
kappa < 0)
1739 else if (i == 3 && state1.
kappa > 0)
1741 for (
int j = 0; j < 4; j++)
1744 if (path[4 * i + j])
1746 lg[4 * i + j] = path[4 * i + j]->
length;
1768 for (
int i = 0; i < 4; i++)
1770 delete start_circle[i];
1771 delete end_circle[i];
1773 for (
int i = 0; i < 16; i++)
1780 return path[best_path];
1793 vector<Control> hc_rs_controls;
1794 hc_rs_controls.reserve(9);
1888 return hc_rs_controls;
bool TceScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TiSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TTcTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
const int nb_hc_cc_rs_paths
double get_epsilon()
Return value of epsilon.
double TeSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
HC_CC_Circle_Param rs_circle_param_
Parameter of a rs-circle.
bool left
Turning direction: left/right.
bool TciScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double center_distance(const HC_CC_Circle &c1, const HC_CC_Circle &c2)
Cartesian distance between the centers of two circles.
void TiST_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2) const
double TcTeSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
double sin_mu
Sine and cosine of mu.
double TiSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci) const
double TcTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
void TTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
bool TeST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TcTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
bool TST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double kappa_
Curvature, sharpness of clothoid.
void TcTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
void pointer_array_init(void *array[], int size)
Initialize an array with nullptr.
void TcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q) const
double cc_turn_length(const Configuration &q) const
Length of a cc-turn.
double TcScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
double TciST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
int array_index_min(double array[], int size)
Find index with minimal value in double array.
double radius
Radius of the outer circle.
void TTcTT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, Configuration **q5, Configuration **q6) const
void TT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q) const
void hc_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a hc-turn.
std::vector< Control > get_controls(const State &state1, const State &state2) const
Returns controls of the shortest path from state1 to state2.
double TTcTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
bool TcST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double hc_turn_length(const Configuration &q) const
Length of a hc-turn.
bool TciST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void TTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
bool regular
Type of the circle: regular/irregular.
HC_CC_Circle_Param hc_cc_circle_param_
Parameters of a hc-/cc-circle.
double configuration_distance(const Configuration &q1, const Configuration &q2)
Cartesian distance between two configurations.
bool TcTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
void cc_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a cc-turn.
Configuration start
Start and end configuration.
bool TiST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TeSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
An implementation of hybrid curvature (HC) steer with either positive (p) or negative (n) max...
bool TcTST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
~HCpm0_Reeds_Shepp_State_Space()
Destructor.
bool TSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TeST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
TFSIMD_FORCE_INLINE tfScalar angle(const Quaternion &q1, const Quaternion &q2)
bool TiScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TceScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
void TcTTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, Configuration **q5, Configuration **q6) const
double TScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
HC_CC_Circle * cstart
Start, end and intermediate circles.
bool TcTTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void straight_controls(const Configuration &q1, const Configuration &q2, std::vector< Control > &controls)
Appends controls with a straight line.
double TcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q) const
double distance(double x0, double y0, double x1, double y1)
HCpm0_Reeds_Shepp_State_Space * parent_
double theta
Orientation in rad between [0, 2*pi[.
void double_array_init(double array[], int size, double value)
Initialize an array with a given value.
bool TceST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double x
Position in x of the robot.
double TcTTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
bool configuration_equal(const Configuration &q1, const Configuration &q2)
Are two configurations equal?
double kappa
Max. curvature, inverse of max. curvature, max. sharpness.
bool TcTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
double length
Path length.
double TTT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, HC_CC_Circle **ci) const
INLINE Rall1d< T, V, S > asin(const Rall1d< T, V, S > &x)
bool TScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void global_frame_change(double x, double y, double theta, double local_x, double local_y, double *global_x, double *global_y)
Transformation of (local_x, local_y) from local coordinate system to global one.
bool TcTeST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double radius_
Outer radius of a hc-/cc-circle.
bool forward
Driving direction: forwards/backwards.
bool TcTSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TcTSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
INLINE Rall1d< T, V, S > sqrt(const Rall1d< T, V, S > &arg)
HC_CC_RS_Path * hcpm0_reeds_shepp(const State &state1, const State &state2) const
Returns a sequence of turns and straight lines connecting a start and an end configuration.
bool TcScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TiST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
hc_cc_rs::path_type type
Path type.
double TcTiST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci) const
Description of a kinematic car's state.
double mu
Angle between the initial orientation and the tangent to the circle at the initial position...
double TeScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
INLINE Rall1d< T, V, S > pow(const Rall1d< T, V, S > &arg, double m)
double TcTST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci) const
double mu_
Angle between a configuration on the hc-/cc-circle and the tangent to the circle at that position...
double TciScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
void TcTcT_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4) const
bool TeScT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
std::unique_ptr< HCpm0_Reeds_Shepp > hcpm0_reeds_shepp_
Pimpl Idiom: unique pointer on class with families.
HC_CC_RS_Path * hcpm0_circles_rs_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
Returns a sequence of turns and straight lines connecting the two circles c1 and c2.
bool TcTiSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TceST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
void rs_turn_controls(const HC_CC_Circle &c, const Configuration &q, bool order, std::vector< Control > &controls)
Appends controls with a rs-turn.
double TcTiSTcT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, Configuration **q4, HC_CC_Circle **ci1, HC_CC_Circle **ci2) const
INLINE Rall1d< T, V, S > atan2(const Rall1d< T, V, S > &y, const Rall1d< T, V, S > &x)
void empty_controls(std::vector< Control > &controls)
Appends controls with 0 input.
double TST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
double kappa
Curvature at position (x,y)
TFSIMD_FORCE_INLINE tfScalar length(const Quaternion &q)
bool TcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
Configuration start
Start configuration.
double TcTeST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3, HC_CC_Circle **ci) const
HCpm0_Reeds_Shepp(HCpm0_Reeds_Shepp_State_Space *parent)
double TiScT_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2, Configuration **q3) const
double xc
Center of the circle.
bool TTT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double TcST_path(const HC_CC_Circle &c1, const HC_CC_Circle &c2, HC_CC_Circle **cstart, HC_CC_Circle **cend, Configuration **q1, Configuration **q2) const
bool TcTeSTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void set_param(double _kappa, double _sigma, double _radius, double _mu, double _sin_mu, double _cos_mu, double _delta_min)
Set parameters.
double y
Position in y of the robot.
double theta
Orientation of the robot.
Configuration * qi1
Intermediate configurations.
double rs_turn_length(const Configuration &q) const
Length of a rs-turn.
bool TcTiST_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
bool TT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
double get_distance(const State &state1, const State &state2) const
Returns shortest path length from state1 to state2.
bool TTcT_exists(const HC_CC_Circle &c1, const HC_CC_Circle &c2) const
void TeST_tangent_circles(const HC_CC_Circle &c1, const HC_CC_Circle &c2, Configuration **q1, Configuration **q2) const