|
| typedef IndexHeapSTL< Index, T > | Heap |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Index | Index |
| |
| typedef NearestNeighbourSearch< T, CloudType >::IndexVector | IndexVector |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Matrix | Matrix |
| |
| typedef KDTreeBalancedPtInNodes< T, CloudType >::Node | Node |
| |
| typedef KDTreeBalancedPtInNodes< T, CloudType >::Nodes | Nodes |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Vector | Vector |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Index | Index |
| |
| typedef NearestNeighbourSearch< T, CloudType >::IndexVector | IndexVector |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Matrix | Matrix |
| |
| typedef NearestNeighbourSearch< T, CloudType >::Vector | Vector |
| |
| typedef CloudType | CloudType |
| | a column-major Eigen matrix in which each column is a point; this matrix has dim rows More...
|
| |
| enum | CreationOptionFlags |
| | creation option More...
|
| |
| typedef int | Index |
| | an index to a Vector or a Matrix, for refering to data points More...
|
| |
| typedef Eigen::Matrix< Index, Eigen::Dynamic, Eigen::Dynamic > | IndexMatrix |
| | a matrix of indices to data points More...
|
| |
| typedef Eigen::Matrix< Index, Eigen::Dynamic, 1 > | IndexVector |
| | a vector of indices to data points More...
|
| |
| typedef Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
| | a column-major Eigen matrix in which each column is a point; this matrix has dim rows More...
|
| |
| enum | SearchOptionFlags |
| | search option More...
|
| |
| enum | SearchType |
| | type of search More...
|
| |
| typedef Eigen::Matrix< T, Eigen::Dynamic, 1 > | Vector |
| | an Eigen vector of type T, to hold the coordinates of a point More...
|
| |
|
| | KDTreeBalancedPtInNodesStack (const CloudType &cloud) |
| |
| virtual IndexVector | knn (const Vector &query, const Index k, const T epsilon, const unsigned optionFlags) |
| |
| unsigned long | knn (const Vector &query, IndexVector &indices, Vector &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const |
| | Find the k nearest neighbours of query. More...
|
| |
| virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const=0 |
| | Find the k nearest neighbours for each point of query. More...
|
| |
| virtual unsigned long | knn (const Matrix &query, IndexMatrix &indices, Matrix &dists2, const Vector &maxRadii, const Index k=1, const T epsilon=0, const unsigned optionFlags=0) const=0 |
| | Find the k nearest neighbours for each point of query. More...
|
| |
| virtual | ~NearestNeighbourSearch () |
| | virtual destructor More...
|
| |
|
| void | recurseKnn (const Vector &query, const size_t n, T rd, Heap &heap, Vector &off, const T maxError, const bool allowSelfMatch) |
| |
| void | buildNodes (const BuildPointsIt first, const BuildPointsIt last, const size_t pos) |
| |
| size_t | childLeft (size_t pos) const |
| |
| size_t | childRight (size_t pos) const |
| |
| IndexVector | cloudIndexesFromNodesIndexes (const IndexVector &indexes) const |
| |
| void | dump (const Vector minValues, const Vector maxValues, const size_t pos) const |
| |
| size_t | getTreeSize (size_t size) const |
| |
| | KDTreeBalancedPtInNodes (const CloudType &cloud) |
| |
| size_t | parent (size_t pos) const |
| |
| void | checkSizesKnn (const Matrix &query, const IndexMatrix &indices, const Matrix &dists2, const Index k, const unsigned optionFlags, const Vector *maxRadii=0) const |
| | Make sure that the output matrices have the right sizes. Throw an exception otherwise. More...
|
| |
| | NearestNeighbourSearch (const CloudType &cloud, const Index dim, const unsigned creationOptionFlags) |
| | constructor More...
|
| |
|
| static NearestNeighbourSearch * | create (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Create a nearest-neighbour search. More...
|
| |
| static NearestNeighbourSearch * | create (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported. More...
|
| |
| static NearestNeighbourSearch * | createBruteForce (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| | Create a nearest-neighbour search, using brute-force search, useful for comparison only. More...
|
| |
| static NearestNeighbourSearch * | createBruteForce (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0) |
| | Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported. More...
|
| |
| static NearestNeighbourSearch * | createKDTreeLinearHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Create a nearest-neighbour search, using a kd-tree with linear heap, good for small k (~up to 30) More...
|
| |
| static NearestNeighbourSearch * | createKDTreeLinearHeap (const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported. More...
|
| |
| static NearestNeighbourSearch * | createKDTreeTreeHeap (const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Create a nearest-neighbour search, using a kd-tree with tree heap, good for large k (~from 30) More...
|
| |
| static NearestNeighbourSearch * | createKDTreeTreeHeap (const WrongMatrixType &, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters()) |
| | Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are supported. More...
|
| |
| const CloudType & | cloud |
| | the reference to the data-point cloud, which must remain valid during the lifetime of the NearestNeighbourSearch object More...
|
| |
| const unsigned | creationOptionFlags |
| | creation options More...
|
| |
| const Index | dim |
| | the dimensionality of the data-point cloud More...
|
| |
| const Vector | maxBound |
| | the high bound of the search space (axis-aligned bounding box) More...
|
| |
| const Vector | minBound |
| | the low bound of the search space (axis-aligned bounding box) More...
|
| |
| static constexpr Index | InvalidIndex |
| | the invalid index More...
|
| |
| static constexpr T | InvalidValue |
| | the invalid value More...
|
| |
| typedef std::vector< BuildPoint > | BuildPoints |
| |
| typedef BuildPoints::const_iterator | BuildPointsCstIt |
| |
| typedef BuildPoints::iterator | BuildPointsIt |
| |
| typedef std::vector< Node > | Nodes |
| |
| Nodes | nodes |
| |
template<typename T, typename CloudType>
struct Nabo::KDTreeBalancedPtInNodesStack< T, CloudType >
Definition at line 124 of file nabo_experimental.h.