45 averageExistingDescriptors(true)
73 const unsigned int numPoints(cloud.
features.cols());
74 const int featDim(cloud.
features.rows());
76 const int timeDim(cloud.
times.rows());
79 assert (featDim == 3 || featDim == 4);
86 for(
unsigned int i = 0; i < labelDim ; ++i)
88 if (insertDim != descDim)
89 throw InvalidField(
"VoxelGridDataPointsFilter: Error, descriptor labels do not match descriptor data");
100 const T minBoundX = minValues.x() /
vSizeX;
101 const T maxBoundX = maxValues.x() /
vSizeX;
102 const T minBoundY = minValues.y() /
vSizeY;
103 const T maxBoundY = maxValues.y() /
vSizeY;
109 minBoundZ = minValues.z() /
vSizeZ;
110 maxBoundZ = maxValues.z() /
vSizeZ;
115 const unsigned int numDivX = 1 + maxBoundX - minBoundX;
116 const unsigned int numDivY = 1 + maxBoundY - minBoundY;;
117 unsigned int numDivZ = 0;
121 numDivZ = 1 + maxBoundZ - minBoundZ;
123 unsigned int numVox = numDivX * numDivY;
129 throw InvalidParameter(
"VoxelGridDataPointsFilter: The number of voxel couldn't be computed. There might be NaNs in the feature matrix. Use the fileter RemoveNaNDataPointsFilter before this one if it's the case.");
137 std::vector<unsigned int> indices(numPoints);
143 std::vector<Voxel> voxels;
148 voxels = std::vector<Voxel>(numVox);
150 catch (std::bad_alloc&)
152 throw InvalidParameter((boost::format(
"VoxelGridDataPointsFilter: Memory allocation error with %1% voxels. Try increasing the voxel dimensions.") % numVox).str());
155 for (
unsigned int p = 0; p < numPoints; ++p)
157 const unsigned int i = floor(cloud.
features(0,p)/
vSizeX - minBoundX);
158 const unsigned int j = floor(cloud.
features(1,p)/
vSizeY- minBoundY);
160 unsigned int idx = 0;
164 idx = i + j * numDivX + k * numDivX * numDivY;
168 idx = i + j * numDivX;
171 const unsigned int pointsInVox = voxels[idx].numPoints + 1;
173 if (pointsInVox == 1)
175 voxels[idx].firstPoint = p;
178 voxels[idx].numPoints = pointsInVox;
186 std::vector<unsigned int> pointsToKeep;
192 for (
unsigned int p = 0; p < numPoints ; ++p)
194 const unsigned int idx = indices[p];
195 const unsigned int firstPoint = voxels[idx].firstPoint;
203 for (
int f = 0;
f < (featDim - 1); ++
f)
210 for (
int d = 0;
d < descDim; ++
d)
214 for (
int d = 0;
d < timeDim; ++
d)
225 for(
unsigned int idx = 0; idx < numVox; ++idx)
227 const unsigned int numPoints = voxels[idx].numPoints;
228 const unsigned int firstPoint = voxels[idx].firstPoint;
231 for (
int f = 0;
f < (featDim - 1); ++
f)
232 cloud.
features(
f,firstPoint) /= numPoints;
236 for (
int d = 0;
d < descDim; ++
d )
238 for (
int d = 0;
d < timeDim; ++
d )
239 cloud.
times(
d,firstPoint) /= numPoints;
241 pointsToKeep.push_back(firstPoint);
251 for (
unsigned int p = 0; p < numPoints ; ++p)
253 const unsigned int idx = indices[p];
254 const unsigned int firstPoint = voxels[idx].firstPoint;
260 for (
int d = 0;
d < descDim; ++
d)
264 for (
int d = 0;
d < timeDim; ++
d)
272 for (
unsigned int idx = 0; idx < numVox; ++idx)
274 const unsigned int numPoints = voxels[idx].numPoints;
275 const unsigned int firstPoint = voxels[idx].firstPoint;
287 k = idx / (numDivX * numDivY);
294 j = (idx - k * numDivX * numDivY) / numDivX;
300 i = idx - k * numDivX * numDivY - j * numDivX;
309 for (
int d = 0;
d < descDim; ++
d)
311 for (
int d = 0;
d < timeDim; ++
d)
312 cloud.
times(
d,firstPoint) /= numPoints;
314 pointsToKeep.push_back(firstPoint);
322 std::sort(pointsToKeep.begin(), pointsToKeep.end());
323 int numPtsOut = pointsToKeep.size();
324 for (
int i = 0; i < numPtsOut; ++i)
326 const int k = pointsToKeep[i];
331 if (cloud.
times.rows() != 0)
Matrix descriptors
descriptors of points in the cloud, might be empty
Parametrizable::InvalidParameter InvalidParameter
const bool averageExistingDescriptors
PointMatcher< T >::DataPoints::InvalidField InvalidField
virtual void inPlaceFilter(DataPoints &cloud)
Apply these filters to a point cloud without copying.
Functions and classes that are dependant on scalar type are defined in this templatized class...
Parametrizable::Parameters Parameters
static const ParametersDoc availableParameters()
VoxelGridDataPointsFilter()
A data filter takes a point cloud as input, transforms it, and produces another point cloud as output...
virtual DataPoints filter(const DataPoints &input)
Apply filters to input point cloud. This is the non-destructive version and returns a copy...
The superclass of classes that are constructed using generic parameters. This class provides the para...
void conservativeResize(Index pointCount)
Resize the cloud to pointCount points, conserving existing ones.
PointMatcher< T >::Vector Vector
S get(const std::string ¶mName)
Return the value of paramName, lexically-casted to S.
Int64Matrix times
time associated to each points, might be empty
Matrix features
features of points in the cloud
Labels descriptorLabels
labels of descriptors