57 return "Subsampling, Surfels (Elipsoids). This filter decomposes the point-cloud space in boxes, by recursively splitting the cloud through axis-aligned hyperplanes such as to maximize the evenness of the aspect ratio of the box. When the number of points in a box reaches a value knn or lower, the filter computes the center of mass of these points and its normal by taking the eigenvector corresponding to the smallest eigenvalue of all points in the box.";
62 {
"ratio",
"ratio of points to keep with random subsampling. Matrix (normal, density, etc.) will be associated to all points in the same bin.",
"0.5",
"0.0000001",
"0.9999999", &P::Comp<T> },
63 {
"knn",
"determined how many points are used to compute the normals. Direct link with the rapidity of the computation (large = fast). Technically, limit over which a box is splitted in two",
"7",
"3",
"2147483647", &P::Comp<unsigned> },
64 {
"samplingMethod",
"if set to 0, random subsampling using the parameter ratio. If set to 1, bin subsampling with the resulting number of points being 1/knn.",
"0",
"0",
"1", &P::Comp<unsigned> },
65 {
"maxBoxDim",
"maximum length of a box above which the box is discarded",
"inf" },
66 {
"averageExistingDescriptors",
"whether the filter keep the existing point descriptors and average them or should it drop them",
"1" },
67 {
"maxTimeWindow",
"maximum spread of times in a surfel",
"inf" },
68 {
"minPlanarity",
"to what extend planarity of surfels needs to be enforced",
"0"},
69 {
"keepNormals",
"whether the normals should be added as descriptors to the resulting cloud",
"1" },
70 {
"keepDensities",
"whether the point densities should be added as descriptors to the resulting cloud",
"0" },
71 {
"keepEigenValues",
"whether the eigen values should be added as descriptors to the resulting cloud",
"0" },
72 {
"keepEigenVectors",
"whether the eigen vectors should be added as descriptors to the resulting cloud",
"0" },
73 {
"keepMeans",
"whether the means should be added as descriptors to the resulting cloud",
"0" },
74 {
"keepCovariances",
"whether the covariances should be added as descriptors to the resulting cloud",
"0" },
75 {
"keepWeights",
"whether the original number of points should be added as descriptors to the resulting cloud",
"0" },
76 {
"keepShapes",
"whether the shape parameters of cylindricity (C), sphericality (S) and planarity (P) shall be calculated",
"0" },
77 {
"keepIndices",
"whether the indices of points an ellipsoid is constructed of shall be kept",
"0" }
103 virtual DataPoints
filter(
const DataPoints& input);
111 typedef typename Eigen::Matrix<std::int64_t, Eigen::Dynamic, Eigen::Dynamic>
Int64Matrix;
112 typedef typename Eigen::Matrix<std::int64_t, 1, Eigen::Dynamic>
Int64Vector;
135 BuildData(Matrix& features, Matrix& descriptors, Int64Matrix& times):
137 descriptors(descriptors),
141 const int pointsCount(features.cols());
142 indices.reserve(pointsCount);
143 for (
int i = 0; i < pointsCount; ++i)
144 indices.push_back(i);
153 bool operator() (
const int& p0,
const int& p1)
155 return buildData.
features(dim, p0) <
161 void buildNew(
BuildData& data,
const int first,
const int last, Vector&& minValues, Vector&& maxValues)
const;
virtual ~ElipsoidsDataPointsFilter()
boost::optional< View > shapes
Parametrizable::ParameterDoc ParameterDoc
const bool keepCovariances
PointMatcher< T >::DataPoints::InvalidField InvalidField
Parametrizable::ParametersDoc ParametersDoc
boost::optional< View > pointIds
boost::optional< View > numOfNN
std::vector< int > Indices
boost::optional< View > pointZ
CompareDim(const int dim, const BuildData &buildData)
const bool averageExistingDescriptors
Parametrizable::InvalidParameter InvalidParameter
virtual void inPlaceFilter(DataPoints &cloud)
void fuseRange(BuildData &data, const int first, const int last) const
PointMatcher< T >::Vector Vector
boost::optional< View > means
Eigen::Matrix< std::int64_t, Eigen::Dynamic, Eigen::Dynamic > Int64Matrix
PointMatcher< T >::Matrix Matrix
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
A dense matrix over ScalarType.
BuildData(Matrix &features, Matrix &descriptors, Int64Matrix ×)
boost::optional< View > eigenVectors
std::map< std::string, Parameter > Parameters
Parameters stored as a map of string->string.
PointMatcherSupport::Parametrizable Parametrizable
const unsigned samplingMethod
PointMatcherSupport::Parametrizable P
void buildNew(BuildData &data, const int first, const int last, Vector &&minValues, Vector &&maxValues) const
Functions and classes that are dependant on scalar type are defined in this templatized class...
boost::optional< View > pointY
static const ParametersDoc availableParameters()
boost::optional< View > covariance
boost::optional< View > densities
ElipsoidsDataPointsFilter(const Parameters ¶ms=Parameters())
Eigen::Matrix< std::int64_t, 1, Eigen::Dynamic > Int64Vector
The documentation of a parameter.
boost::optional< View > eigenValues
The superclass of classes that are constructed using generic parameters. This class provides the para...
An exception thrown when one tries to fetch the value of an unexisting parameter. ...
std::vector< ParameterDoc > ParametersDoc
The documentation of all parameters.
static const std::string description()
Eigen::Block< Matrix > View
A view on a feature or descriptor.
DataPointsFilter()
Construct without parameter.
boost::optional< View > normals
An exception thrown when one tries to access features or descriptors unexisting or of wrong dimension...
Parametrizable::Parameters Parameters
Eigen::Matrix< T, Eigen::Dynamic, 1 > Vector
A vector over ScalarType.
boost::optional< View > weights
const bool keepEigenValues
boost::optional< View > pointX
virtual DataPoints filter(const DataPoints &input)
PointMatcher< T >::DataPoints DataPoints
const bool keepEigenVectors
const BuildData & buildData
Subsampling Surfels (Elipsoids) filter. First decimate the space until there is at most knn points...