5 #ifndef SENSOR_MSGS_MESSAGE_CAMERAINFO_H 6 #define SENSOR_MSGS_MESSAGE_CAMERAINFO_H 24 template <
class ContainerAllocator>
78 typedef std::basic_string<char, std::char_traits<char>,
typename ContainerAllocator::template rebind<char>::other >
_distortion_model_type;
81 typedef std::vector<double, typename ContainerAllocator::template rebind<double>::other >
_D_type;
99 typedef ::sensor_msgs::RegionOfInterest_<ContainerAllocator>
_roi_type;
105 typedef std::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator> >
Ptr;
106 typedef std::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator>
const>
ConstPtr;
110 typedef ::sensor_msgs::CameraInfo_<std::allocator<void> >
CameraInfo;
119 template<
typename ContainerAllocator>
120 std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::CameraInfo_<ContainerAllocator> &
v)
130 namespace message_traits
143 template <
class ContainerAllocator>
148 template <
class ContainerAllocator>
153 template <
class ContainerAllocator>
158 template <
class ContainerAllocator>
163 template <
class ContainerAllocator>
168 template <
class ContainerAllocator>
174 template<
class ContainerAllocator>
179 return "c9a58c1b0b154e0e6da7578cb991d214";
182 static const char*
value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) {
return value(); }
183 static const uint64_t static_value1 = 0xc9a58c1b0b154e0eULL;
184 static const uint64_t static_value2 = 0x6da7578cb991d214ULL;
187 template<
class ContainerAllocator>
192 return "sensor_msgs/CameraInfo";
195 static const char*
value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) {
return value(); }
198 template<
class ContainerAllocator>
203 return "# This message defines meta information for a camera. It should be in a\n\ 204 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 205 # image topics named:\n\ 207 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 208 # image - monochrome, distorted\n\ 209 # image_color - color, distorted\n\ 210 # image_rect - monochrome, rectified\n\ 211 # image_rect_color - color, rectified\n\ 213 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 214 # for producing the four processed image topics from image_raw and\n\ 215 # camera_info. The meaning of the camera parameters are described in\n\ 216 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 218 # The image_geometry package provides a user-friendly interface to\n\ 219 # common operations using this meta information. If you want to, e.g.,\n\ 220 # project a 3d point into image coordinates, we strongly recommend\n\ 221 # using image_geometry.\n\ 223 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 224 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 225 # indicates an uncalibrated camera.\n\ 227 #######################################################################\n\ 228 # Image acquisition info #\n\ 229 #######################################################################\n\ 231 # Time of image acquisition, camera coordinate frame ID\n\ 232 Header header # Header timestamp should be acquisition time of image\n\ 233 # Header frame_id should be optical frame of camera\n\ 234 # origin of frame should be optical center of camera\n\ 235 # +x should point to the right in the image\n\ 236 # +y should point down in the image\n\ 237 # +z should point into the plane of the image\n\ 240 #######################################################################\n\ 241 # Calibration Parameters #\n\ 242 #######################################################################\n\ 243 # These are fixed during camera calibration. Their values will be the #\n\ 244 # same in all messages until the camera is recalibrated. Note that #\n\ 245 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 247 # The internal parameters can be used to warp a raw (distorted) image #\n\ 249 # 1. An undistorted image (requires D and K) #\n\ 250 # 2. A rectified image (requires D, K, R) #\n\ 251 # The projection matrix P projects 3D points into the rectified image.#\n\ 252 #######################################################################\n\ 254 # The image dimensions with which the camera was calibrated. Normally\n\ 255 # this will be the full camera resolution in pixels.\n\ 259 # The distortion model used. Supported models are listed in\n\ 260 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 261 # simple model of radial and tangential distortion - is sufficient.\n\ 262 string distortion_model\n\ 264 # The distortion parameters, size depending on the distortion model.\n\ 265 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 268 # Intrinsic camera matrix for the raw (distorted) images.\n\ 272 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 273 # coordinates using the focal lengths (fx, fy) and principal point\n\ 275 float64[9] K # 3x3 row-major matrix\n\ 277 # Rectification matrix (stereo cameras only)\n\ 278 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 279 # stereo image plane so that epipolar lines in both stereo images are\n\ 281 float64[9] R # 3x3 row-major matrix\n\ 283 # Projection/camera matrix\n\ 285 # P = [ 0 fy' cy' Ty]\n\ 287 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 288 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 289 # is the normal camera intrinsic matrix for the rectified image.\n\ 290 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 291 # coordinates using the focal lengths (fx', fy') and principal point\n\ 292 # (cx', cy') - these may differ from the values in K.\n\ 293 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 294 # also have R = the identity and P[1:3,1:3] = K.\n\ 295 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 296 # position of the optical center of the second camera in the first\n\ 297 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 298 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 299 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 300 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 301 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 302 # the rectified image is given by:\n\ 303 # [u v w]' = P * [X Y Z 1]'\n\ 306 # This holds for both images of a stereo pair.\n\ 307 float64[12] P # 3x4 row-major matrix\n\ 310 #######################################################################\n\ 311 # Operational Parameters #\n\ 312 #######################################################################\n\ 313 # These define the image region actually captured by the camera #\n\ 314 # driver. Although they affect the geometry of the output image, they #\n\ 315 # may be changed freely without recalibrating the camera. #\n\ 316 #######################################################################\n\ 318 # Binning refers here to any camera setting which combines rectangular\n\ 319 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 320 # resolution of the output image to\n\ 321 # (width / binning_x) x (height / binning_y).\n\ 322 # The default values binning_x = binning_y = 0 is considered the same\n\ 323 # as binning_x = binning_y = 1 (no subsampling).\n\ 327 # Region of interest (subwindow of full camera resolution), given in\n\ 328 # full resolution (unbinned) image coordinates. A particular ROI\n\ 329 # always denotes the same window of pixels on the camera sensor,\n\ 330 # regardless of binning settings.\n\ 331 # The default setting of roi (all values 0) is considered the same as\n\ 332 # full resolution (roi.width = width, roi.height = height).\n\ 333 RegionOfInterest roi\n\ 335 ================================================================================\n\ 336 MSG: std_msgs/Header\n\ 337 # Standard metadata for higher-level stamped data types.\n\ 338 # This is generally used to communicate timestamped data \n\ 339 # in a particular coordinate frame.\n\ 341 # sequence ID: consecutively increasing ID \n\ 343 #Two-integer timestamp that is expressed as:\n\ 344 # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\ 345 # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\ 346 # time-handling sugar is provided by the client library\n\ 348 #Frame this data is associated with\n\ 353 ================================================================================\n\ 354 MSG: sensor_msgs/RegionOfInterest\n\ 355 # This message is used to specify a region of interest within an image.\n\ 357 # When used to specify the ROI setting of the camera when the image was\n\ 358 # taken, the height and width fields should either match the height and\n\ 359 # width fields for the associated image; or height = width = 0\n\ 360 # indicates that the full resolution image was captured.\n\ 362 uint32 x_offset # Leftmost pixel of the ROI\n\ 363 # (0 if the ROI includes the left edge of the image)\n\ 364 uint32 y_offset # Topmost pixel of the ROI\n\ 365 # (0 if the ROI includes the top edge of the image)\n\ 366 uint32 height # Height of ROI\n\ 367 uint32 width # Width of ROI\n\ 369 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 370 # ROI in this message. Typically this should be False if the full image\n\ 371 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 377 static const char*
value(const ::sensor_msgs::CameraInfo_<ContainerAllocator>&) {
return value(); }
385 namespace serialization
392 stream.next(m.header);
393 stream.next(m.height);
394 stream.next(m.width);
395 stream.next(m.distortion_model);
400 stream.next(m.binning_x);
401 stream.next(m.binning_y);
413 namespace message_operations
416 template<
class ContainerAllocator>
419 template<
typename Stream>
static void stream(Stream&
s,
const std::string&
indent, const ::sensor_msgs::CameraInfo_<ContainerAllocator>&
v)
421 s << indent <<
"header: ";
424 s << indent <<
"height: ";
426 s << indent <<
"width: ";
428 s << indent <<
"distortion_model: ";
430 s << indent <<
"D[]" << std::endl;
431 for (
size_t i = 0;
i < v.D.size(); ++
i)
433 s << indent <<
" D[" <<
i <<
"]: ";
436 s << indent <<
"K[]" << std::endl;
437 for (
size_t i = 0;
i < v.K.size(); ++
i)
439 s << indent <<
" K[" <<
i <<
"]: ";
442 s << indent <<
"R[]" << std::endl;
443 for (
size_t i = 0;
i < v.R.size(); ++
i)
445 s << indent <<
" R[" <<
i <<
"]: ";
448 s << indent <<
"P[]" << std::endl;
449 for (
size_t i = 0;
i < v.P.size(); ++
i)
451 s << indent <<
" P[" <<
i <<
"]: ";
454 s << indent <<
"binning_x: ";
456 s << indent <<
"binning_y: ";
458 s << indent <<
"roi: ";
467 #endif // SENSOR_MSGS_MESSAGE_CAMERAINFO_H static const char * value()
static void stream(Stream &s, const std::string &indent, const ::sensor_msgs::CameraInfo_< ContainerAllocator > &v)
typedef void(APIENTRY *GLDEBUGPROC)(GLenum source
Base type for compile-type true/false tests. Compatible with Boost.MPL. classes inheriting from this ...
std::array< double, 9 > _K_type
_binning_x_type binning_x
::sensor_msgs::CameraInfo_< std::allocator< void > > CameraInfo
Specialize to provide the md5sum for a message.
std::vector< double, typename ContainerAllocator::template rebind< double >::other > _D_type
def indent(str, line_prefix=' ')
Base type for compile-type true/false tests. Compatible with Boost.MPL. classes inheriting from this ...
Specialize to provide the datatype for a message.
::std_msgs::Header_< ContainerAllocator > _header_type
std::shared_ptr< ::sensor_msgs::CameraInfo const > CameraInfoConstPtr
A fixed-size datatype is one whose size is constant, i.e. it has no variable-length arrays or strings...
Stream base-class, provides common functionality for IStream and OStream.
std::shared_ptr< ::sensor_msgs::CameraInfo_< ContainerAllocator > const > ConstPtr
std::basic_string< char, std::char_traits< char >, typename ContainerAllocator::template rebind< char >::other > _distortion_model_type
static void allInOne(Stream &stream, T m)
Tools for manipulating sensor_msgs.
GLint GLsizei GLsizei height
std::shared_ptr< ::sensor_msgs::CameraInfo > CameraInfoPtr
#define ROS_DECLARE_ALLINONE_SERIALIZER
Declare your serializer to use an allInOne member instead of requiring 3 different serialization func...
static const char * value(const ::sensor_msgs::CameraInfo_< ContainerAllocator > &)
unsigned __int64 uint64_t
Specialize to provide the definition for a message.
static const char * value()
static const char * value(const ::sensor_msgs::CameraInfo_< ContainerAllocator > &)
CameraInfo_(const ContainerAllocator &_alloc)
std::array< double, 12 > _P_type
static const char * value(const ::sensor_msgs::CameraInfo_< ContainerAllocator > &)
_binning_y_type binning_y
_distortion_model_type distortion_model
std::shared_ptr< ::sensor_msgs::CameraInfo_< ContainerAllocator > > Ptr
static const char * value()
std::array< double, 9 > _R_type
Templated serialization class. Default implementation provides backwards compatibility with old messa...
CameraInfo_< ContainerAllocator > Type
::sensor_msgs::RegionOfInterest_< ContainerAllocator > _roi_type