#include <LossFunctions.h>
Public Types | |
enum | ReweightScheme { Scalar, Block } |
typedef std::shared_ptr< Base > | shared_ptr |
Public Member Functions | |
Base (const ReweightScheme reweight=Block) | |
virtual bool | equals (const Base &expected, double tol=1e-8) const =0 |
virtual double | loss (double distance) const |
virtual void | print (const std::string &s) const =0 |
void | reweight (Vector &error) const |
void | reweight (std::vector< Matrix > &A, Vector &error) const |
void | reweight (Matrix &A, Vector &error) const |
void | reweight (Matrix &A1, Matrix &A2, Vector &error) const |
void | reweight (Matrix &A1, Matrix &A2, Matrix &A3, Vector &error) const |
ReweightScheme | reweightScheme () const |
Returns the reweight scheme, as explained in ReweightScheme. More... | |
double | sqrtWeight (double distance) const |
Vector | sqrtWeight (const Vector &error) const |
virtual double | weight (double distance) const =0 |
Vector | weight (const Vector &error) const |
virtual | ~Base () |
Protected Attributes | |
ReweightScheme | reweight_ |
Strategy for reweighting. More... | |
Pure virtual class for all robust error function classes.
It provides the machinery for block vs scalar reweighting strategies, in addition to defining the interface of derived classes.
Definition at line 65 of file LossFunctions.h.
typedef std::shared_ptr<Base> gtsam::noiseModel::mEstimator::Base::shared_ptr |
Definition at line 70 of file LossFunctions.h.
the rows can be weighted independently according to the error or uniformly with the norm of the right hand side
Enumerator | |
---|---|
Scalar | |
Block |
Definition at line 69 of file LossFunctions.h.
|
inline |
Definition at line 77 of file LossFunctions.h.
|
inlinevirtual |
Definition at line 78 of file LossFunctions.h.
|
pure virtual |
Implemented in gtsam::noiseModel::mEstimator::L2WithDeadZone, gtsam::noiseModel::mEstimator::DCS, gtsam::noiseModel::mEstimator::GemanMcClure, gtsam::noiseModel::mEstimator::Welsch, gtsam::noiseModel::mEstimator::Tukey, gtsam::noiseModel::mEstimator::Cauchy, gtsam::noiseModel::mEstimator::Huber, gtsam::noiseModel::mEstimator::Fair, and gtsam::noiseModel::mEstimator::Null.
|
inlinevirtual |
This method is responsible for returning the total penalty for a given amount of error. For example, this method is responsible for implementing the quadratic function for an L2 penalty, the absolute value function for an L1 penalty, etc.
TODO(mikebosse): When the loss function has as input the norm of the error vector, then it prevents implementations of asymmeric loss functions. It would be better for this function to accept the vector and internally call the norm if necessary.
This returns (x) in mEstimator
Reimplemented in gtsam::noiseModel::mEstimator::L2WithDeadZone, gtsam::noiseModel::mEstimator::DCS, gtsam::noiseModel::mEstimator::GemanMcClure, gtsam::noiseModel::mEstimator::Welsch, gtsam::noiseModel::mEstimator::Tukey, gtsam::noiseModel::mEstimator::Cauchy, gtsam::noiseModel::mEstimator::Huber, gtsam::noiseModel::mEstimator::Fair, and gtsam::noiseModel::mEstimator::Null.
Definition at line 96 of file LossFunctions.h.
|
pure virtual |
Implemented in gtsam::noiseModel::mEstimator::L2WithDeadZone, gtsam::noiseModel::mEstimator::DCS, gtsam::noiseModel::mEstimator::GemanMcClure, gtsam::noiseModel::mEstimator::Welsch, gtsam::noiseModel::mEstimator::Tukey, gtsam::noiseModel::mEstimator::Cauchy, gtsam::noiseModel::mEstimator::Huber, gtsam::noiseModel::mEstimator::Fair, and gtsam::noiseModel::mEstimator::Null.
void Base::reweight | ( | Vector & | error | ) | const |
reweight block matrices and a vector according to their weight implementation
Definition at line 50 of file LossFunctions.cpp.
Definition at line 60 of file LossFunctions.cpp.
Definition at line 78 of file LossFunctions.cpp.
Definition at line 92 of file LossFunctions.cpp.
Definition at line 108 of file LossFunctions.cpp.
|
inline |
Returns the reweight scheme, as explained in ReweightScheme.
Definition at line 81 of file LossFunctions.h.
|
inline |
Definition at line 113 of file LossFunctions.h.
square root version of the weight function
Definition at line 43 of file LossFunctions.cpp.
|
pure virtual |
This method is responsible for returning the weight function for a given amount of error. The weight function is related to the analytic derivative of the loss function. See https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf for details. This method is required when optimizing cost functions with robust penalties using iteratively re-weighted least squares.
This returns w(x) in mEstimator
Implemented in gtsam::noiseModel::mEstimator::L2WithDeadZone, gtsam::noiseModel::mEstimator::DCS, gtsam::noiseModel::mEstimator::GemanMcClure, gtsam::noiseModel::mEstimator::Welsch, gtsam::noiseModel::mEstimator::Tukey, gtsam::noiseModel::mEstimator::Cauchy, gtsam::noiseModel::mEstimator::Huber, gtsam::noiseModel::mEstimator::Fair, and gtsam::noiseModel::mEstimator::Null.
produce a weight vector according to an error vector and the implemented robust function
Definition at line 35 of file LossFunctions.cpp.
|
protected |