49 template <
class T>
static inline T
min(T x,T y) {
return (x<y)?x:y; }
52 template <
class T>
static inline T
max(T x,T y) {
return (x>y)?x:y; }
54 template <
class T>
static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
55 template <
class S,
class T>
static inline void clone(T*& dst, S* src,
int n)
58 memcpy((
void *)dst,(
void *)src,
sizeof(T)*n);
60 static inline double powi(
double base,
int times)
62 double tmp = base, ret = 1.0;
64 for(
int t=times; t>0; t/=2)
73 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) 82 static void info(
const char *fmt,...)
89 (*svm_print_string)(buf);
92 static void info(
const char *fmt,...) {}
164 int more = len - h->
len;
207 swap(h->data[i],h->data[j]);
230 virtual Qfloat *get_Q(
int column,
int len)
const = 0;
231 virtual double *get_QD()
const = 0;
232 virtual void swap_index(
int i,
int j)
const = 0;
244 virtual Qfloat *get_Q(
int column,
int len)
const = 0;
245 virtual double *get_QD()
const = 0;
249 if(x_square)
swap(x_square[i],x_square[j]);
253 double (
Kernel::*kernel_function)(
int i,
int j)
const;
268 return dot(x[i],x[j]);
272 return powi(gamma*dot(x[i],x[j])+coef0,degree);
276 return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
280 return tanh(gamma*dot(x[i],x[j])+coef0);
284 return x[i][(int)(x[j][0].value)].
value;
295 :kernel_type(param.kernel_type), degree(param.degree),
296 gamma(param.gamma), coef0(param.coef0)
393 while(x->
index != -1)
399 while(y->
index != -1)
405 return exp(-param.
gamma*sum);
446 void Solve(
int l,
const QMatrix& Q,
const double *p_,
const schar *y_,
447 double *alpha_,
const double* C_,
double eps,
473 if(alpha[i] >= get_C(i))
474 alpha_status[i] = UPPER_BOUND;
475 else if(alpha[i] <= 0)
476 alpha_status[i] = LOWER_BOUND;
477 else alpha_status[i] = FREE;
481 bool is_free(
int i) {
return alpha_status[i] == FREE; }
483 void reconstruct_gradient();
484 virtual int select_working_set(
int &i,
int &j);
485 virtual double calculate_rho();
486 virtual void do_shrinking();
488 bool be_shrunk(
int i,
double Gmax1,
double Gmax2);
496 swap(alpha_status[i],alpha_status[j]);
497 swap(alpha[i],alpha[j]);
499 swap(active_set[i],active_set[j]);
500 swap(G_bar[i],G_bar[j]);
508 if(active_size == l)
return;
513 for(j=active_size;j<l;j++)
514 G[j] = G_bar[j] + p[j];
516 for(j=0;j<active_size;j++)
520 if(2*nr_free < active_size)
521 info(
"\nWARNING: using -h 0 may be faster\n");
523 if (nr_free*l > 2*active_size*(l-active_size))
525 for(i=active_size;i<l;i++)
527 const Qfloat *Q_i = Q->get_Q(i,active_size);
528 for(j=0;j<active_size;j++)
530 G[i] += alpha[j] * Q_i[j];
535 for(i=0;i<active_size;i++)
538 const Qfloat *Q_i = Q->get_Q(i,l);
539 double alpha_i = alpha[i];
540 for(j=active_size;j<l;j++)
541 G[j] += alpha_i * Q_i[j];
547 double *alpha_,
const double* C_,
double eps,
555 clone(alpha,alpha_,l);
562 alpha_status =
new char[l];
564 update_alpha_status(i);
569 active_set =
new int[l];
578 G_bar =
new double[l];
586 if(!is_lower_bound(i))
589 double alpha_i = alpha[i];
592 G[j] += alpha_i*Q_i[j];
593 if(is_upper_bound(i))
595 G_bar[j] += get_C(i) * Q_i[j];
602 int max_iter =
max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
603 int counter =
min(l,1000)+1;
605 while(iter < max_iter)
611 counter =
min(l,1000);
612 if(shrinking) do_shrinking();
617 if(select_working_set(i,j)!=0)
620 reconstruct_gradient();
624 if(select_working_set(i,j)!=0)
637 double C_i = get_C(i);
638 double C_j = get_C(j);
640 double old_alpha_i = alpha[i];
641 double old_alpha_j = alpha[j];
645 double quad_coef = QD[i]+QD[j]+2*Q_i[j];
648 double delta = (-G[i]-G[j])/quad_coef;
649 double diff = alpha[i] - alpha[j];
674 alpha[j] = C_i - diff;
682 alpha[i] = C_j + diff;
688 double quad_coef = QD[i]+QD[j]-2*Q_i[j];
691 double delta = (G[i]-G[j])/quad_coef;
692 double sum = alpha[i] + alpha[j];
701 alpha[j] = sum - C_i;
717 alpha[i] = sum - C_j;
732 double delta_alpha_i = alpha[i] - old_alpha_i;
733 double delta_alpha_j = alpha[j] - old_alpha_j;
735 for(
int k=0;k<active_size;k++)
737 G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
743 bool ui = is_upper_bound(i);
744 bool uj = is_upper_bound(j);
745 update_alpha_status(i);
746 update_alpha_status(j);
748 if(ui != is_upper_bound(i))
753 G_bar[k] -= C_i * Q_i[k];
756 G_bar[k] += C_i * Q_i[k];
759 if(uj != is_upper_bound(j))
764 G_bar[k] -= C_j * Q_j[k];
767 G_bar[k] += C_j * Q_j[k];
777 reconstruct_gradient();
781 fprintf(stderr,
"\nWARNING: reaching max number of iterations\n");
786 si->
rho = calculate_rho();
793 v += alpha[i] * (G[i] + p[i]);
801 alpha_[active_set[i]] = alpha[i];
815 info(
"\noptimization finished, #iter = %d\n",iter);
821 delete[] alpha_status;
840 double obj_diff_min =
INF;
842 for(
int t=0;t<active_size;t++)
845 if(!is_upper_bound(t))
854 if(!is_lower_bound(t))
865 Q_i = Q->get_Q(i,active_size);
867 for(
int j=0;j<active_size;j++)
871 if (!is_lower_bound(j))
873 double grad_diff=Gmax+G[j];
879 double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
881 obj_diff = -(grad_diff*grad_diff)/quad_coef;
883 obj_diff = -(grad_diff*grad_diff)/
TAU;
885 if (obj_diff <= obj_diff_min)
888 obj_diff_min = obj_diff;
895 if (!is_upper_bound(j))
897 double grad_diff= Gmax-G[j];
903 double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
905 obj_diff = -(grad_diff*grad_diff)/quad_coef;
907 obj_diff = -(grad_diff*grad_diff)/
TAU;
909 if (obj_diff <= obj_diff_min)
912 obj_diff_min = obj_diff;
929 if(is_upper_bound(i))
932 return(-G[i] > Gmax1);
934 return(-G[i] > Gmax2);
936 else if(is_lower_bound(i))
939 return(G[i] > Gmax2);
941 return(G[i] > Gmax1);
954 for(i=0;i<active_size;i++)
958 if(!is_upper_bound(i))
963 if(!is_lower_bound(i))
971 if(!is_upper_bound(i))
976 if(!is_lower_bound(i))
984 if(unshrink ==
false && Gmax1 + Gmax2 <= eps*10)
987 reconstruct_gradient();
992 for(i=0;i<active_size;i++)
993 if (be_shrunk(i, Gmax1, Gmax2))
996 while (active_size > i)
998 if (!be_shrunk(active_size, Gmax1, Gmax2))
1012 double ub =
INF, lb = -
INF, sum_free = 0;
1013 for(
int i=0;i<active_size;i++)
1015 double yG = y[i]*G[i];
1017 if(is_upper_bound(i))
1024 else if(is_lower_bound(i))
1039 r = sum_free/nr_free;
1056 double *alpha,
double* C_,
double eps,
1057 SolutionInfo* si,
int shrinking)
1064 int select_working_set(
int &i,
int &j);
1065 double calculate_rho();
1066 bool be_shrunk(
int i,
double Gmax1,
double Gmax2,
double Gmax3,
double Gmax4);
1067 void do_shrinking();
1079 double Gmaxp = -
INF;
1080 double Gmaxp2 = -
INF;
1083 double Gmaxn = -
INF;
1084 double Gmaxn2 = -
INF;
1088 double obj_diff_min =
INF;
1090 for(
int t=0;t<active_size;t++)
1093 if(!is_upper_bound(t))
1102 if(!is_lower_bound(t))
1112 const Qfloat *Q_ip = NULL;
1113 const Qfloat *Q_in = NULL;
1115 Q_ip = Q->get_Q(ip,active_size);
1117 Q_in = Q->get_Q(in,active_size);
1119 for(
int j=0;j<active_size;j++)
1123 if (!is_lower_bound(j))
1125 double grad_diff=Gmaxp+G[j];
1131 double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
1133 obj_diff = -(grad_diff*grad_diff)/quad_coef;
1135 obj_diff = -(grad_diff*grad_diff)/
TAU;
1137 if (obj_diff <= obj_diff_min)
1140 obj_diff_min = obj_diff;
1147 if (!is_upper_bound(j))
1149 double grad_diff=Gmaxn-G[j];
1150 if (-G[j] >= Gmaxn2)
1155 double quad_coef = QD[in]+QD[j]-2*Q_in[j];
1157 obj_diff = -(grad_diff*grad_diff)/quad_coef;
1159 obj_diff = -(grad_diff*grad_diff)/
TAU;
1161 if (obj_diff <= obj_diff_min)
1164 obj_diff_min = obj_diff;
1171 if(
max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
1174 if (y[Gmin_idx] == +1)
1185 if(is_upper_bound(i))
1188 return(-G[i] > Gmax1);
1190 return(-G[i] > Gmax4);
1192 else if(is_lower_bound(i))
1195 return(G[i] > Gmax2);
1197 return(G[i] > Gmax3);
1205 double Gmax1 = -
INF;
1206 double Gmax2 = -
INF;
1207 double Gmax3 = -
INF;
1208 double Gmax4 = -
INF;
1212 for(i=0;i<active_size;i++)
1214 if(!is_upper_bound(i))
1218 if(-G[i] > Gmax1) Gmax1 = -G[i];
1220 else if(-G[i] > Gmax4) Gmax4 = -G[i];
1222 if(!is_lower_bound(i))
1226 if(G[i] > Gmax2) Gmax2 = G[i];
1228 else if(G[i] > Gmax3) Gmax3 = G[i];
1232 if(unshrink ==
false &&
max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
1235 reconstruct_gradient();
1239 for(i=0;i<active_size;i++)
1240 if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
1243 while (active_size > i)
1245 if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
1257 int nr_free1 = 0,nr_free2 = 0;
1258 double ub1 =
INF, ub2 =
INF;
1259 double lb1 = -
INF, lb2 = -
INF;
1260 double sum_free1 = 0, sum_free2 = 0;
1262 for(
int i=0;i<active_size;i++)
1266 if(is_upper_bound(i))
1267 lb1 =
max(lb1,G[i]);
1268 else if(is_lower_bound(i))
1269 ub1 =
min(ub1,G[i]);
1278 if(is_upper_bound(i))
1279 lb2 =
max(lb2,G[i]);
1280 else if(is_lower_bound(i))
1281 ub2 =
min(ub2,G[i]);
1292 r1 = sum_free1/nr_free1;
1297 r2 = sum_free2/nr_free2;
1312 :
Kernel(prob.l, prob.
x, param)
1316 QD =
new double[prob.
l];
1317 for(
int i=0;i<prob.
l;i++)
1325 if((start = cache->get_data(i,&data,len)) < len)
1327 for(j=start;j<len;j++)
1340 cache->swap_index(i,j);
1362 :
Kernel(prob.l, prob.
x, param)
1365 QD =
new double[prob.
l];
1366 for(
int i=0;i<prob.
l;i++)
1374 if((start = cache->get_data(i,&data,len)) < len)
1376 for(j=start;j<len;j++)
1389 cache->swap_index(i,j);
1408 :
Kernel(prob.l, prob.
x, param)
1412 QD =
new double[2*l];
1413 sign =
new schar[2*l];
1414 index =
new int[2*l];
1415 for(
int k=0;k<l;k++)
1424 buffer[0] =
new Qfloat[2*l];
1425 buffer[1] =
new Qfloat[2*l];
1431 swap(sign[i],sign[j]);
1432 swap(index[i],index[j]);
1439 int j, real_i = index[i];
1440 if(cache->get_data(real_i,&data,l) < l)
1447 Qfloat *buf = buffer[next_buffer];
1448 next_buffer = 1 - next_buffer;
1451 buf[j] = (
Qfloat) si * (
Qfloat) sign[j] * data[index[j]];
1487 double *minus_ones =
new double[l];
1489 double *C =
new double[l];
1500 C[i] = prob->
W[i]*Cp;
1505 C[i] = prob->
W[i]*Cn;
1512 s.
Solve(l,
SVC_Q(*prob,*param,y), minus_ones, y,
1527 delete[] minus_ones;
1537 double nu = param->
nu;
1540 double *C =
new double[l];
1552 for(i=0;i<l;i++) nu_l += nu*C[i];
1553 double sum_pos = nu_l/2;
1554 double sum_neg = nu_l/2;
1559 alpha[i] =
min(C[i],sum_pos);
1560 sum_pos -= alpha[i];
1564 alpha[i] =
min(C[i],sum_neg);
1565 sum_neg -= alpha[i];
1568 double *zeros =
new double[l];
1578 info(
"C = %f\n",1/r);
1599 double *zeros =
new double[l];
1601 double *C =
new double[l];
1609 nu_l += C[i] * param->
nu;
1615 alpha[i] =
min(C[i],nu_l);
1642 double *alpha2 =
new double[2*l];
1643 double *linear_term =
new double[2*l];
1644 double *C =
new double[2*l];
1651 linear_term[i] = param->
p - prob->
y[i];
1653 C[i] = prob->
W[i]*param->
C;
1656 linear_term[i+l] = param->
p + prob->
y[i];
1658 C[i+l] = prob->
W[i]*param->
C;
1662 s.
Solve(2*l,
SVR_Q(*prob,*param), linear_term, y,
1664 double sum_alpha = 0;
1667 alpha[i] = alpha2[i] - alpha2[i+l];
1668 sum_alpha += fabs(alpha[i]);
1672 delete[] linear_term;
1682 double *C =
new double[2*l];
1683 double *alpha2 =
new double[2*l];
1684 double *linear_term =
new double[2*l];
1691 C[i] = C[i+l] = prob->
W[i]*param->
C;
1692 sum += C[i] * param->
nu;
1698 alpha2[i] = alpha2[i+l] =
min(sum,C[i]);
1701 linear_term[i] = - prob->
y[i];
1704 linear_term[i+l] = prob->
y[i];
1709 s.
Solve(2*l,
SVR_Q(*prob,*param), linear_term, y,
1712 info(
"epsilon = %f\n",-si->
r);
1715 alpha[i] = alpha2[i] - alpha2[i+l];
1718 delete[] linear_term;
1734 double Cp,
double Cn)
1736 double *alpha =
Malloc(
double,prob->
l);
1768 for(
int i=0;i<prob->
l;i++)
1770 if(fabs(alpha[i]) > 0)
1788 info(
"nSV = %d, nBSV = %d\n",nSV,nBSV);
1798 int l,
const double *dec_values,
const double *labels,
1799 double& A,
double& B)
1801 double prior1=0, prior0 = 0;
1805 if (labels[i] > 0) prior1+=1;
1809 double min_step=1e-10;
1812 double hiTarget=(prior1+1.0)/(prior1+2.0);
1813 double loTarget=1/(prior0+2.0);
1814 double *t=
Malloc(
double,l);
1815 double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
1816 double newA,newB,newf,d1,d2;
1820 A=0.0; B=log((prior0+1.0)/(prior1+1.0));
1825 if (labels[i]>0) t[i]=hiTarget;
1827 fApB = dec_values[i]*A+B;
1829 fval += t[i]*fApB + log(1+exp(-fApB));
1831 fval += (t[i] - 1)*fApB +log(1+exp(fApB));
1833 for (iter=0;iter<max_iter;iter++)
1838 h21=0.0;g1=0.0;g2=0.0;
1841 fApB = dec_values[i]*A+B;
1844 p=exp(-fApB)/(1.0+exp(-fApB));
1845 q=1.0/(1.0+exp(-fApB));
1849 p=1.0/(1.0+exp(fApB));
1850 q=exp(fApB)/(1.0+exp(fApB));
1853 h11+=dec_values[i]*dec_values[i]*d2;
1855 h21+=dec_values[i]*d2;
1857 g1+=dec_values[i]*d1;
1862 if (fabs(g1)<eps && fabs(g2)<eps)
1866 det=h11*h22-h21*h21;
1867 dA=-(h22*g1 - h21 * g2) / det;
1868 dB=-(-h21*g1+ h11 * g2) / det;
1873 while (stepsize >= min_step)
1875 newA = A + stepsize * dA;
1876 newB = B + stepsize * dB;
1882 fApB = dec_values[i]*newA+newB;
1884 newf += t[i]*fApB + log(1+exp(-fApB));
1886 newf += (t[i] - 1)*fApB +log(1+exp(fApB));
1889 if (newf<fval+0.0001*stepsize*gd)
1891 A=newA;B=newB;fval=newf;
1895 stepsize = stepsize / 2.0;
1898 if (stepsize < min_step)
1900 info(
"Line search fails in two-class probability estimates\n");
1906 info(
"Reaching maximal iterations in two-class probability estimates\n");
1912 double fApB = decision_value*A+B;
1915 return exp(-fApB)/(1.0+exp(-fApB));
1917 return 1.0/(1+exp(fApB)) ;
1924 int iter = 0, max_iter=
max(100,k);
1925 double **Q=
Malloc(
double *,k);
1926 double *Qp=
Malloc(
double,k);
1927 double pQp, eps=0.005/k;
1936 Q[t][t]+=r[j][t]*r[j][t];
1941 Q[t][t]+=r[j][t]*r[j][t];
1942 Q[t][j]=-r[j][t]*r[t][j];
1945 for (iter=0;iter<max_iter;iter++)
1953 Qp[t]+=Q[t][j]*p[j];
1959 double error=fabs(Qp[t]-pQp);
1960 if (error>max_error)
1963 if (max_error<eps)
break;
1967 double diff=(-Qp[t]+pQp)/Q[t][t];
1969 pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
1972 Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
1978 info(
"Exceeds max_iter in multiclass_prob\n");
1979 for(t=0;t<k;t++) free(Q[t]);
1987 double Cp,
double Cn,
double& probA,
double& probB)
1991 int *perm =
Malloc(
int,prob->
l);
1992 double *dec_values =
Malloc(
double,prob->
l);
1995 for(i=0;i<prob->
l;i++) perm[i]=i;
1996 for(i=0;i<prob->
l;i++)
1998 int j = i+rand()%(prob->
l-i);
1999 swap(perm[i],perm[j]);
2001 for(i=0;i<nr_fold;i++)
2003 int begin = i*prob->
l/nr_fold;
2004 int end = (i+1)*prob->
l/nr_fold;
2008 subprob.
l = prob->
l-(end-begin);
2010 subprob.y =
Malloc(
double,subprob.l);
2011 subprob.W =
Malloc(
double,subprob.l);
2014 for(j=0;j<begin;j++)
2016 subprob.x[k] = prob->
x[perm[j]];
2017 subprob.y[k] = prob->
y[perm[j]];
2018 subprob.W[k] = prob->
W[perm[j]];
2021 for(j=end;j<prob->
l;j++)
2023 subprob.x[k] = prob->
x[perm[j]];
2024 subprob.y[k] = prob->
y[perm[j]];
2025 subprob.W[k] = prob->
W[perm[j]];
2028 int p_count=0,n_count=0;
2035 if(p_count==0 && n_count==0)
2036 for(j=begin;j<end;j++)
2037 dec_values[perm[j]] = 0;
2038 else if(p_count > 0 && n_count == 0)
2039 for(j=begin;j<end;j++)
2040 dec_values[perm[j]] = 1;
2041 else if(p_count == 0 && n_count > 0)
2042 for(j=begin;j<end;j++)
2043 dec_values[perm[j]] = -1;
2057 for(j=begin;j<end;j++)
2061 dec_values[perm[j]] *= submodel->
label[0];
2081 double *ymv =
Malloc(
double,prob->
l);
2087 for(i=0;i<prob->
l;i++)
2089 ymv[i]=prob->
y[i]-ymv[i];
2090 mae += fabs(ymv[i]);
2093 double std=sqrt(2*mae*mae);
2096 for(i=0;i<prob->
l;i++)
2097 if (fabs(ymv[i]) > 5*std)
2101 mae /= (prob->
l-count);
2102 info(
"Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
2113 int max_nr_class = 16;
2116 int *count =
Malloc(
int,max_nr_class);
2117 int *data_label =
Malloc(
int,l);
2122 int this_label = (int)prob->
y[i];
2124 for(j=0;j<nr_class;j++)
2126 if(this_label == label[j])
2135 if(nr_class == max_nr_class)
2138 label = (
int *)realloc(label,max_nr_class*
sizeof(
int));
2139 count = (
int *)realloc(count,max_nr_class*
sizeof(
int));
2147 int *start =
Malloc(
int,nr_class);
2150 start[i] = start[i-1]+count[i-1];
2153 perm[start[data_label[i]]] = i;
2154 ++start[data_label[i]];
2158 start[i] = start[i-1]+count[i-1];
2174 for(i=0;i<prob->
l;i++)
2175 if(prob->
W[i] > 0) l++;
2179 newprob->
y =
Malloc(
double,l);
2180 newprob->
W =
Malloc(
double,l);
2183 for(i=0;i<prob->
l;i++)
2186 newprob->
x[j] = prob->
x[i];
2187 newprob->
y[j] = prob->
y[i];
2188 newprob->
W[j] = prob->
W[i];
2212 model->
label = NULL;
2231 for(i=0;i<prob->
l;i++)
2238 for(i=0;i<prob->
l;i++)
2239 if(fabs(f.
alpha[i]) > 0)
2241 model->
SV[j] = prob->
x[i];
2257 int *perm =
Malloc(
int,l);
2262 info(
"WARNING: training data in only one class. See README for details.\n");
2271 x[i] = prob->
x[perm[i]];
2272 W[i] = prob->
W[perm[i]];
2277 double *weighted_C =
Malloc(
double, nr_class);
2279 weighted_C[i] = param->
C;
2280 for(i=0;i<param->nr_weight;i++)
2287 fprintf(stderr,
"WARNING: class label %d specified in weight is not found\n", param->
weight_label[i]);
2289 weighted_C[j] *= param->
weight[i];
2294 bool *nonzero =
Malloc(
bool,l);
2302 probA=
Malloc(
double,nr_class*(nr_class-1)/2);
2303 probB=
Malloc(
double,nr_class*(nr_class-1)/2);
2311 int si = start[i], sj = start[j];
2312 int ci = count[i], cj = count[j];
2315 sub_prob.
y =
Malloc(
double,sub_prob.
l);
2316 sub_prob.
W =
Malloc(
double,sub_prob.
l);
2320 sub_prob.
x[k] = x[si+k];
2322 sub_prob.
W[k] = W[si+k];
2326 sub_prob.
x[ci+k] = x[sj+k];
2327 sub_prob.
y[ci+k] = -1;
2328 sub_prob.
W[ci+k] = W[sj+k];
2334 f[p] =
svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
2336 if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
2337 nonzero[si+k] =
true;
2339 if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
2340 nonzero[sj+k] =
true;
2353 model->
label[i] = label[i];
2355 model->
rho =
Malloc(
double,nr_class*(nr_class-1)/2);
2356 for(i=0;i<nr_class*(nr_class-1)/2;i++)
2357 model->
rho[i] = f[i].
rho;
2361 model->
probA =
Malloc(
double,nr_class*(nr_class-1)/2);
2362 model->
probB =
Malloc(
double,nr_class*(nr_class-1)/2);
2363 for(i=0;i<nr_class*(nr_class-1)/2;i++)
2365 model->
probA[i] = probA[i];
2366 model->
probB[i] = probB[i];
2376 int *nz_count =
Malloc(
int,nr_class);
2381 for(
int j=0;j<count[i];j++)
2382 if(nonzero[start[i]+j])
2391 info(
"Total nSV = %d\n",total_sv);
2393 model->
l = total_sv;
2400 model->
SV[p] = x[i];
2404 int *nz_start =
Malloc(
int,nr_class);
2407 nz_start[i] = nz_start[i-1]+nz_count[i-1];
2410 for(i=0;i<nr_class-1;i++)
2426 int q = nz_start[i];
2448 for(i=0;i<nr_class*(nr_class-1)/2;i++)
2464 int *fold_start =
Malloc(
int,nr_fold+1);
2466 int *perm =
Malloc(
int,l);
2480 int *fold_count =
Malloc(
int,nr_fold);
2482 int *index =
Malloc(
int,l);
2486 for(i=0;i<count[c];i++)
2488 int j = i+rand()%(count[c]-i);
2489 swap(index[start[c]+j],index[start[c]+i]);
2491 for(i=0;i<nr_fold;i++)
2495 fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
2498 for (i=1;i<=nr_fold;i++)
2499 fold_start[i] = fold_start[i-1]+fold_count[i-1];
2501 for(i=0;i<nr_fold;i++)
2503 int begin = start[c]+i*count[c]/nr_fold;
2504 int end = start[c]+(i+1)*count[c]/nr_fold;
2505 for(
int j=begin;j<end;j++)
2507 perm[fold_start[i]] = index[j];
2512 for (i=1;i<=nr_fold;i++)
2513 fold_start[i] = fold_start[i-1]+fold_count[i-1];
2522 for(i=0;i<
l;i++) perm[i]=i;
2525 int j = i+rand()%(l-i);
2526 swap(perm[i],perm[j]);
2528 for(i=0;i<=nr_fold;i++)
2529 fold_start[i]=i*l/nr_fold;
2532 for(i=0;i<nr_fold;i++)
2534 int begin = fold_start[i];
2535 int end = fold_start[i+1];
2539 subprob.
l = l-(end-begin);
2541 subprob.
y =
Malloc(
double,subprob.
l);
2543 subprob.
W =
Malloc(
double,subprob.
l);
2545 for(j=0;j<begin;j++)
2547 subprob.
x[k] = prob->
x[perm[j]];
2548 subprob.
y[k] = prob->
y[perm[j]];
2549 subprob.
W[k] = prob->
W[perm[j]];
2554 subprob.
x[k] = prob->
x[perm[j]];
2555 subprob.
y[k] = prob->
y[perm[j]];
2556 subprob.
W[k] = prob->
W[perm[j]];
2564 for(j=begin;j<end;j++)
2566 free(prob_estimates);
2569 for(j=begin;j<end;j++)
2570 target[perm[j]] =
svm_predict(submodel,prob->
x[perm[j]]);
2593 if (model->
label != NULL)
2595 label[i] = model->
label[i];
2601 for(
int i=0;i<model->
l;i++)
2614 return model->
probA[0];
2617 fprintf(stderr,
"Model doesn't contain information for SVR probability inference\n");
2631 double *coef = model->
sv_coef[0];
2637 sum += kv * coef[i] * coef[j];
2652 double *kvalue =
Malloc(
double,l);
2658 double *coef = model->
sv_coef[0];
2660 sum += coef[i] * kvalue[i];
2661 sum -= model->
rho[0];
2665 return sum * model->
label[0];
2677 for(i=0;i<model->
l;i++)
2679 sum -= model->
rho[0];
2683 return (sum>0)?1:-1;
2692 double *kvalue =
Malloc(
double,l);
2696 int *start =
Malloc(
int,nr_class);
2699 start[i] = start[i-1]+model->
nSV[i-1];
2701 int *vote =
Malloc(
int,nr_class);
2712 int ci = model->
nSV[i];
2713 int cj = model->
nSV[j];
2716 double *coef1 = model->
sv_coef[j-1];
2717 double *coef2 = model->
sv_coef[i];
2719 sum += coef1[si+k] * kvalue[si+k];
2721 sum += coef2[sj+k] * kvalue[sj+k];
2722 sum -= model->
rho[p];
2723 dec_values[p] = sum;
2725 if(dec_values[p] > 0)
2732 int vote_max_idx = 0;
2734 if(vote[i] > vote[vote_max_idx])
2740 return model->
label[vote_max_idx];
2751 dec_values =
Malloc(
double, 1);
2753 dec_values =
Malloc(
double, nr_class*(nr_class-1)/2);
2767 double *dec_values =
Malloc(
double, nr_class*(nr_class-1)/2);
2770 double min_prob=1e-7;
2771 double **pairwise_prob=
Malloc(
double *,nr_class);
2773 pairwise_prob[i]=
Malloc(
double,nr_class);
2779 pairwise_prob[j][i]=1-pairwise_prob[i][j];
2784 int prob_max_idx = 0;
2786 if(prob_estimates[i] > prob_estimates[prob_max_idx])
2789 free(pairwise_prob[i]);
2791 free(pairwise_prob);
2792 return model->
label[prob_max_idx];
2800 "c_svc",
"nu_svc",
"one_class",
"epsilon_svr",
"nu_svr",NULL
2805 "linear",
"polynomial",
"rbf",
"sigmoid",
"precomputed",NULL
2810 FILE *fp = fopen(model_file_name,
"w");
2811 if(fp==NULL)
return -1;
2813 char *old_locale = strdup(setlocale(LC_ALL, NULL));
2814 setlocale(LC_ALL,
"C");
2822 fprintf(fp,
"degree %d\n", param.
degree);
2825 fprintf(fp,
"gamma %g\n", param.
gamma);
2828 fprintf(fp,
"coef0 %g\n", param.
coef0);
2832 fprintf(fp,
"nr_class %d\n", nr_class);
2833 fprintf(fp,
"total_sv %d\n",l);
2837 for(
int i=0;i<nr_class*(nr_class-1)/2;i++)
2838 fprintf(fp,
" %g",model->
rho[i]);
2844 fprintf(fp,
"label");
2846 fprintf(fp,
" %d",model->
label[i]);
2852 fprintf(fp,
"probA");
2853 for(
int i=0;i<nr_class*(nr_class-1)/2;i++)
2854 fprintf(fp,
" %g",model->
probA[i]);
2859 fprintf(fp,
"probB");
2860 for(
int i=0;i<nr_class*(nr_class-1)/2;i++)
2861 fprintf(fp,
" %g",model->
probB[i]);
2867 fprintf(fp,
"nr_sv");
2869 fprintf(fp,
" %d",model->
nSV[i]);
2873 fprintf(fp,
"SV\n");
2877 for(
int i=0;i<
l;i++)
2879 for(
int j=0;j<nr_class-1;j++)
2880 fprintf(fp,
"%.16g ",sv_coef[j][i]);
2885 fprintf(fp,
"0:%d ",(
int)(p->
value));
2887 while(p->
index != -1)
2895 setlocale(LC_ALL, old_locale);
2898 if (ferror(fp) != 0 || fclose(fp) != 0)
return -1;
2912 while(strrchr(
line,
'\n') == NULL)
2916 len = (int) strlen(
line);
2925 FILE *fp = fopen(model_file_name,
"rb");
2926 if(fp==NULL)
return NULL;
2928 char *old_locale = strdup(setlocale(LC_ALL, NULL));
2929 setlocale(LC_ALL,
"C");
2936 model->
probA = NULL;
2937 model->
probB = NULL;
2938 model->
label = NULL;
2944 fscanf(fp,
"%80s",cmd);
2946 if(strcmp(cmd,
"svm_type")==0)
2948 fscanf(fp,
"%80s",cmd);
2960 fprintf(stderr,
"unknown svm type.\n");
2962 setlocale(LC_ALL, old_locale);
2971 else if(strcmp(cmd,
"kernel_type")==0)
2973 fscanf(fp,
"%80s",cmd);
2985 fprintf(stderr,
"unknown kernel function.\n");
2987 setlocale(LC_ALL, old_locale);
2996 else if(strcmp(cmd,
"degree")==0)
2997 fscanf(fp,
"%d",¶m.
degree);
2998 else if(strcmp(cmd,
"gamma")==0)
2999 fscanf(fp,
"%lf",¶m.
gamma);
3000 else if(strcmp(cmd,
"coef0")==0)
3001 fscanf(fp,
"%lf",¶m.
coef0);
3002 else if(strcmp(cmd,
"nr_class")==0)
3004 else if(strcmp(cmd,
"total_sv")==0)
3005 fscanf(fp,
"%d",&model->
l);
3006 else if(strcmp(cmd,
"rho")==0)
3010 for(
int i=0;i<n;i++)
3011 fscanf(fp,
"%lf",&model->
rho[i]);
3013 else if(strcmp(cmd,
"label")==0)
3017 for(
int i=0;i<n;i++)
3018 fscanf(fp,
"%d",&model->
label[i]);
3020 else if(strcmp(cmd,
"probA")==0)
3024 for(
int i=0;i<n;i++)
3025 fscanf(fp,
"%lf",&model->
probA[i]);
3027 else if(strcmp(cmd,
"probB")==0)
3031 for(
int i=0;i<n;i++)
3032 fscanf(fp,
"%lf",&model->
probB[i]);
3034 else if(strcmp(cmd,
"nr_sv")==0)
3038 for(
int i=0;i<n;i++)
3039 fscanf(fp,
"%d",&model->
nSV[i]);
3041 else if(strcmp(cmd,
"SV")==0)
3046 if(c==EOF || c==
'\n')
break;
3052 fprintf(stderr,
"unknown text in model file: [%s]\n",cmd);
3054 setlocale(LC_ALL, old_locale);
3067 long pos = ftell(fp);
3071 char *p,*endptr,*idx,*val;
3075 p = strtok(
line,
":");
3078 p = strtok(NULL,
":");
3084 elements += model->
l;
3086 fseek(fp,pos,SEEK_SET);
3102 model->
SV[i] = &x_space[j];
3104 p = strtok(
line,
" \t");
3105 model->
sv_coef[0][i] = strtod(p,&endptr);
3106 for(
int k=1;k<m;k++)
3108 p = strtok(NULL,
" \t");
3109 model->
sv_coef[k][i] = strtod(p,&endptr);
3114 idx = strtok(NULL,
":");
3115 val = strtok(NULL,
" \t");
3119 x_space[j].
index = (int) strtol(idx,&endptr,10);
3120 x_space[j].
value = strtod(val,&endptr);
3124 x_space[j++].
index = -1;
3128 setlocale(LC_ALL, old_locale);
3131 if (ferror(fp) != 0 || fclose(fp) != 0)
3140 if(model_ptr->
free_sv && model_ptr->
l > 0 && model_ptr->
SV != NULL)
3141 free((
void *)(model_ptr->
SV[0]));
3144 for(
int i=0;i<model_ptr->
nr_class-1;i++)
3148 free(model_ptr->
SV);
3149 model_ptr->
SV = NULL;
3154 free(model_ptr->
rho);
3155 model_ptr->
rho = NULL;
3157 free(model_ptr->
label);
3158 model_ptr->
label= NULL;
3160 free(model_ptr->
probA);
3161 model_ptr->
probA = NULL;
3163 free(model_ptr->
probB);
3164 model_ptr->
probB= NULL;
3166 free(model_ptr->
nSV);
3167 model_ptr->
nSV = NULL;
3172 if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
3175 free(*model_ptr_ptr);
3176 *model_ptr_ptr = NULL;
3191 if(svm_type !=
C_SVC &&
3196 return "unknown svm type";
3201 if(kernel_type !=
LINEAR &&
3202 kernel_type !=
POLY &&
3203 kernel_type !=
RBF &&
3206 return "unknown kernel type";
3208 if(param->
gamma < 0)
3212 return "degree of polynomial kernel < 0";
3217 return "cache_size <= 0";
3222 if(svm_type ==
C_SVC ||
3231 if(param->
nu <= 0 || param->
nu > 1)
3232 return "nu <= 0 or nu > 1";
3240 return "shrinking != 0 and shrinking != 1";
3244 return "probability != 0 and probability != 1";
3248 return "one-class SVM probability output not supported yet";
3256 int max_nr_class = 16;
3259 double *count =
Malloc(
double,max_nr_class);
3264 int this_label = (int)prob->
y[i];
3266 for(j=0;j<nr_class;j++)
3267 if(this_label == label[j])
3269 count[j] += prob->
W[i];
3274 if(nr_class == max_nr_class)
3277 label = (
int *)realloc(label,max_nr_class*
sizeof(
int));
3278 count = (
double *)realloc(count,max_nr_class*
sizeof(
double));
3288 double n1 = count[i];
3291 double n2 = count[j];
3292 if(param->
nu*(n1+n2)/2 >
min(n1,n2))
3296 return "specified nu is infeasible";
3312 model->
probA!=NULL);
3317 if(print_func == NULL)
int svm_save_model(const char *model_file_name, const svm_model *model)
svm_model * svm_train(const svm_problem *prob, const svm_parameter *param)
static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
static void solve_one_class(const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si)
int get_data(const int index, Qfloat **data, int len)
double svm_predict_values_twoclass(const struct svm_model *model, const struct svm_node *x)
void svm_free_model_content(svm_model *model_ptr)
double kernel_sigmoid(int i, int j) const
double kernel_linear(int i, int j) const
void Solve(int l, const QMatrix &Q, const double *p, const schar *y, double *alpha, double *C_, double eps, SolutionInfo *si, int shrinking)
const char * svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
static double dot(const svm_node *px, const svm_node *py)
void swap_index(int i, int j)
ONE_CLASS_Q(const svm_problem &prob, const svm_parameter ¶m)
virtual Qfloat * get_Q(int column, int len) const =0
static double sigmoid_predict(double decision_value, double A, double B)
int select_working_set(int &i, int &j)
static void solve_epsilon_svr(const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si)
int svm_get_nr_sv(const svm_model *model)
static const char * kernel_type_table[]
void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
void swap_index(int i, int j) const
double(Kernel::* kernel_function)(int i, int j) const
void swap_index(int i, int j) const
static void sigmoid_train(int l, const double *dec_values, const double *labels, double &A, double &B)
double svm_get_svr_probability(const svm_model *model)
virtual int select_working_set(int &i, int &j)
double svm_predict(const svm_model *model, const svm_node *x)
static void info(const char *fmt,...)
static void print_string_stdout(const char *s)
virtual void swap_index(int i, int j) const
double kernel_precomputed(int i, int j) const
int svm_get_nr_class(const svm_model *model)
Kernel(int l, svm_node *const *x, const svm_parameter ¶m)
int svm_check_probability_model(const svm_model *model)
static void solve_nu_svr(const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si)
static void clone(T *&dst, S *src, int n)
bool is_upper_bound(int i)
static void(* svm_print_string)(const char *)
static void svm_binary_svc_probability(const svm_problem *prob, const svm_parameter *param, double Cp, double Cn, double &probA, double &probB)
void lru_insert(head_t *h)
static char * readline(FILE *input)
static double powi(double base, int times)
void svm_free_and_destroy_model(svm_model **model_ptr_ptr)
double svm_predict_values(const svm_model *model, const svm_node *x, double *dec_values)
double svm_predict_probability(const svm_model *model, const svm_node *x, double *prob_estimates)
void update_alpha_status(int i)
struct svm_parameter param
void swap_index(int i, int j) const
static double svm_svr_probability(const svm_problem *prob, const svm_parameter *param)
SVR_Q(const svm_problem &prob, const svm_parameter ¶m)
void svm_get_sv_indices(const svm_model *model, int *indices)
void lru_delete(head_t *h)
Qfloat * get_Q(int i, int len) const
double kernel_poly(int i, int j) const
double kernel_rbf(int i, int j) const
virtual double * get_QD() const =0
static decision_function svm_train_one(const svm_problem *prob, const svm_parameter *param, double Cp, double Cn)
void swap_index(int i, int j)
SVC_Q(const svm_problem &prob, const svm_parameter ¶m, const schar *y_)
static void multiclass_probability(int k, double **r, double *p)
static void swap(T &x, T &y)
int svm_get_svm_type(const svm_model *model)
virtual void do_shrinking()
static double k_function(const svm_node *x, const svm_node *y, const svm_parameter ¶m)
static void solve_nu_svc(const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si)
double svm_hyper_w_normsqr_twoclass(const struct svm_model *model)
bool is_lower_bound(int i)
static const char * svm_type_table[]
void Solve(int l, const QMatrix &Q, const double *p_, const schar *y_, double *alpha_, const double *C_, double eps, SolutionInfo *si, int shrinking)
bool be_shrunk(int i, double Gmax1, double Gmax2)
virtual double calculate_rho()
static void solve_c_svc(const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo *si, double Cp, double Cn)
svm_model * svm_load_model(const char *model_file_name)
void svm_destroy_param(svm_parameter *param)
Qfloat * get_Q(int i, int len) const
void svm_get_labels(const svm_model *model, int *label)
bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
void reconstruct_gradient()
Cache(int l, long int size)
Qfloat * get_Q(int i, int len) const
double k_function(const svm_node *x, const svm_node *y, const svm_parameter ¶m)
void svm_set_print_string_function(void(*print_func)(const char *))
static void remove_zero_weight(svm_problem *newprob, const svm_problem *prob)