ecl::PascalsTriangle< N > Class Template Reference

Holds the coefficients for pascal's triangle up to row N. More...

`#include <pascals_triangle.hpp>`

## Public Types

typedef Array< int,(N+2) *(N+1)/2 >::const_iterator const_iterator
Utilise the array's iterator for parsing the triangle. More...

## Public Member Functions

const_iterator begin (unsigned int index=0) const
Iterator generator for diagonals of pascals triangle [begin]. More...

const_iterator end (unsigned int index=0) const
Iterator generator for diagonals of pascals triangle [end]. More...

PascalsTriangle ()
Default constructor. More...

virtual ~PascalsTriangle ()

## Private Attributes

Array< int,(N+2) *(N+1)/2 > coefficients

## Friends

template<typename OutputStream , int PowerN>
OutputStream & operator<< (OutputStream &ostream, const PascalsTriangle< PowerN > &triangle)
Streaming output insertion operator for for pascal triangles. More...

## Detailed Description

### template<int N> class ecl::PascalsTriangle< N >

Holds the coefficients for pascal's triangle up to row N.

Stores the coefficients of all rows (determined in diagonal order) up until row N - i.e. all coefficients up to and including those for (x+y)^0 to (x+y)^N. Coefficients are stored as a sequence of rows going from top to bottom right (of the triangle) and moving left. For example, for N = 5, the representation in the array is as shown below:

(*this) = 1,1,1,1,1,1,
1,2,3,4,5,
1,3,6,10,
1,4,10,
1,5,
1;
Template Parameters
 N : calculate the triangle to the N-th power.
See also
Math::Polynomials.

Definition at line 57 of file pascals_triangle.hpp.

## ◆ const_iterator

template<int N>
 typedef Array::const_iterator ecl::PascalsTriangle< N >::const_iterator

Utilise the array's iterator for parsing the triangle.

Definition at line 63 of file pascals_triangle.hpp.

## ◆ PascalsTriangle()

template<int N>
 ecl::PascalsTriangle< N >::PascalsTriangle ( )

Default constructor.

This computes all coefficients of the triangle up to row N.

Definition at line 208 of file pascals_triangle.hpp.

## ◆ ~PascalsTriangle()

template<int N>
 virtual ecl::PascalsTriangle< N >::~PascalsTriangle ( )
inlinevirtual

Definition at line 63 of file pascals_triangle.hpp.

## ◆ begin()

template<int N>
 PascalsTriangle< N >::const_iterator ecl::PascalsTriangle< N >::begin ( unsigned int index = `0` ) const

Iterator generator for diagonals of pascals triangle [begin].

Return a const iterator pointing to the first element of the specified diagonal.

Parameters
 index : the diagonal to be iterated.
Returns
const_iterator : constant iterator pointing pointing to the first element of the specified diagonal.

Definition at line 230 of file pascals_triangle.hpp.

## ◆ end()

template<int N>
 PascalsTriangle< N >::const_iterator ecl::PascalsTriangle< N >::end ( unsigned int index = `0` ) const

Iterator generator for diagonals of pascals triangle [end].

Return a const iterator just past the last element of the specified diagonal.

Parameters
 index : the diagonal to be iterated.
Returns
const_iterator : constant iterator pointing just beyond the last of the specified diagonal.

Definition at line 245 of file pascals_triangle.hpp.

## ◆ operator<<

template<int N>
template<typename OutputStream , int PowerN>
 OutputStream& operator<< ( OutputStream & ostream, const PascalsTriangle< PowerN > & triangle )
friend

Streaming output insertion operator for for pascal triangles.

Streaming output insertion operator for for pascal triangles.

Template Parameters
 OutputStream : the type of stream being used. PowerN : the order of the pascal's triangle being inserted.
Parameters
 ostream : the stream to send the output to. triangle : the pascal triangle object.
Returns
OutputStream : the output stream.

Definition at line 271 of file pascals_triangle.hpp.

## ◆ coefficients

template<int N>
 Array ecl::PascalsTriangle< N >::coefficients
private

Definition at line 79 of file pascals_triangle.hpp.

The documentation for this class was generated from the following file:

ecl_geometry
Author(s): Daniel Stonier
autogenerated on Mon Feb 28 2022 22:18:49