Robust Cholesky decomposition of a matrix with pivoting. More...
#include <LDLT.h>
Public Types | |
| enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo } |
| typedef Eigen::Index | Index |
| typedef _MatrixType | MatrixType |
| typedef PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > | PermutationType |
| typedef NumTraits< typename MatrixType::Scalar >::Real | RealScalar |
| typedef MatrixType::Scalar | Scalar |
| typedef MatrixType::StorageIndex | StorageIndex |
| typedef Matrix< Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1 > | TmpMatrixType |
| typedef internal::LDLT_Traits< MatrixType, UpLo > | Traits |
| typedef Transpositions< RowsAtCompileTime, MaxRowsAtCompileTime > | TranspositionType |
Public Member Functions | |
| template<typename RhsType , typename DstType > | |
| EIGEN_DEVICE_FUNC void | _solve_impl (const RhsType &rhs, DstType &dst) const |
| template<typename RhsType , typename DstType > | |
| void | _solve_impl (const RhsType &rhs, DstType &dst) const |
| const LDLT & | adjoint () const |
| Index | cols () const |
| template<typename InputType > | |
| LDLT & | compute (const EigenBase< InputType > &matrix) |
| template<typename InputType > | |
| LDLT< MatrixType, _UpLo > & | compute (const EigenBase< InputType > &a) |
| ComputationInfo | info () const |
| Reports whether previous computation was successful. More... | |
| bool | isNegative (void) const |
| bool | isPositive () const |
| LDLT () | |
| Default Constructor. More... | |
| LDLT (Index size) | |
| Default Constructor with memory preallocation. More... | |
| template<typename InputType > | |
| LDLT (const EigenBase< InputType > &matrix) | |
| Constructor with decomposition. More... | |
| template<typename InputType > | |
| LDLT (EigenBase< InputType > &matrix) | |
| Constructs a LDLT factorization from a given matrix. More... | |
| Traits::MatrixL | matrixL () const |
| const MatrixType & | matrixLDLT () const |
| Traits::MatrixU | matrixU () const |
| template<typename Derived > | |
| LDLT & | rankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1) |
| template<typename Derived > | |
| LDLT< MatrixType, _UpLo > & | rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma) |
| RealScalar | rcond () const |
| MatrixType | reconstructedMatrix () const |
| Index | rows () const |
| void | setZero () |
| template<typename Rhs > | |
| const Solve< LDLT, Rhs > | solve (const MatrixBase< Rhs > &b) const |
| template<typename Derived > | |
| bool | solveInPlace (MatrixBase< Derived > &bAndX) const |
| const TranspositionType & | transpositionsP () const |
| Diagonal< const MatrixType > | vectorD () const |
Static Protected Member Functions | |
| static void | check_template_parameters () |
Protected Attributes | |
| ComputationInfo | m_info |
| bool | m_isInitialized |
| RealScalar | m_l1_norm |
| MatrixType | m_matrix |
| internal::SignMatrix | m_sign |
| TmpMatrixType | m_temporary |
| TranspositionType | m_transpositions |
Robust Cholesky decomposition of a matrix with pivoting.
| _MatrixType | the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| _UpLo | the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix
such that
, where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
This class supports the inplace decomposition mechanism.
| typedef Eigen::Index Eigen::LDLT< _MatrixType, _UpLo >::Index |
| typedef _MatrixType Eigen::LDLT< _MatrixType, _UpLo >::MatrixType |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::LDLT< _MatrixType, _UpLo >::PermutationType |
| typedef NumTraits<typename MatrixType::Scalar>::Real Eigen::LDLT< _MatrixType, _UpLo >::RealScalar |
| typedef MatrixType::Scalar Eigen::LDLT< _MatrixType, _UpLo >::Scalar |
| typedef MatrixType::StorageIndex Eigen::LDLT< _MatrixType, _UpLo >::StorageIndex |
| typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> Eigen::LDLT< _MatrixType, _UpLo >::TmpMatrixType |
| typedef internal::LDLT_Traits<MatrixType,UpLo> Eigen::LDLT< _MatrixType, _UpLo >::Traits |
| typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::LDLT< _MatrixType, _UpLo >::TranspositionType |
| anonymous enum |
|
inline |
|
inlineexplicit |
|
inlineexplicit |
Constructor with decomposition.
This calculates the decomposition for the input matrix.
|
inlineexplicit |
Constructs a LDLT factorization from a given matrix.
This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.
| EIGEN_DEVICE_FUNC void Eigen::LDLT< _MatrixType, _UpLo >::_solve_impl | ( | const RhsType & | rhs, |
| DstType & | dst | ||
| ) | const |
| void Eigen::LDLT< _MatrixType, _UpLo >::_solve_impl | ( | const RhsType & | rhs, |
| DstType & | dst | ||
| ) | const |
|
inline |
*this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
|
inlinestaticprotected |
|
inline |
| LDLT& Eigen::LDLT< _MatrixType, _UpLo >::compute | ( | const EigenBase< InputType > & | matrix | ) |
| LDLT<MatrixType,_UpLo>& Eigen::LDLT< _MatrixType, _UpLo >::compute | ( | const EigenBase< InputType > & | a | ) |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
| LDLT& Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate | ( | const MatrixBase< Derived > & | w, |
| const RealScalar & | alpha = 1 |
||
| ) |
| LDLT<MatrixType,_UpLo>& Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate | ( | const MatrixBase< Derived > & | w, |
| const typename LDLT< MatrixType, _UpLo >::RealScalar & | sigma | ||
| ) |
Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
| w | a vector to be incorporated into the decomposition. |
| sigma | a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
|
inline |
| MatrixType Eigen::LDLT< MatrixType, _UpLo >::reconstructedMatrix | ( | ) | const |
|
inline |
|
inline |
|
inline |
using the current decomposition of A.This function also supports in-place solves using the syntax x = decompositionObject.solve(x) .
More precisely, this method solves
using the decomposition
by solving the systems
,
,
,
and
in succession. If the matrix
is singular, then
will also be singular (all the other matrices are invertible). In that case, the least-square solution of
is computed. This does not mean that this function computes the least-square solution of
is
is singular.
| bool Eigen::LDLT< MatrixType, _UpLo >::solveInPlace | ( | MatrixBase< Derived > & | bAndX | ) | const |
|
inline |
|
inline |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |