Enumerations
Enumerations

Enumerations

enum  LBFGSpp::LINE_SEARCH_ALGORITHM { LBFGSpp::LBFGS_LINESEARCH_BACKTRACKING_ARMIJO = 1, LBFGSpp::LBFGS_LINESEARCH_BACKTRACKING = 2, LBFGSpp::LBFGS_LINESEARCH_BACKTRACKING_WOLFE = 2, LBFGSpp::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3 }
 

Detailed Description

Enumeration types for line search.

Enumeration Type Documentation

◆ LINE_SEARCH_ALGORITHM

The enumeration of line search algorithms.

Enumerator
LBFGS_LINESEARCH_BACKTRACKING_ARMIJO 

Backtracking method with the Armijo condition. The backtracking method finds the step length such that it satisfies the sufficient decrease (Armijo) condition, $f(x + a \cdot d) \le f(x) + \beta' \cdot a \cdot g(x)^T d$, where $x$ is the current point, $d$ is the current search direction, $a$ is the step length, and $\beta'$ is the value specified by LBFGSParam::ftol. $f$ and $g$ are the function and gradient values respectively.

LBFGS_LINESEARCH_BACKTRACKING 

The backtracking method with the defualt (regular Wolfe) condition. An alias of LBFGS_LINESEARCH_BACKTRACKING_WOLFE.

LBFGS_LINESEARCH_BACKTRACKING_WOLFE 

Backtracking method with regular Wolfe condition. The backtracking method finds the step length such that it satisfies both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) and the curvature condition, $g(x + a \cdot d)^T d \ge \beta \cdot g(x)^T d$, where $\beta$ is the value specified by LBFGSParam::wolfe.

LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE 

Backtracking method with strong Wolfe condition. The backtracking method finds the step length such that it satisfies both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) and the following condition, $\vert g(x + a \cdot d)^T d\vert \le \beta \cdot \vert g(x)^T d\vert$, where $\beta$ is the value specified by LBFGSParam::wolfe.

Definition at line 25 of file Param.h.



co_scan
Author(s):
autogenerated on Mon Feb 28 2022 23:00:58