11 #ifndef EIGEN_ORDERING_H    12 #define EIGEN_ORDERING_H    26 template<
typename MatrixType> 
    31   for (
int i = 0; i < C.rows(); i++) 
    33       for (
typename MatrixType::InnerIterator it(C, i); it; ++it)
    41 #ifndef EIGEN_MPL2_ONLY    51 template <
typename StorageIndex>
    60     template <
typename MatrixType>
    61     void operator()(
const MatrixType& mat, PermutationType& perm)
    64       SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm;
    73     template <
typename SrcType, 
unsigned int SrcUpLo> 
    76       SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat;
    84 #endif // EIGEN_MPL2_ONLY    94 template <
typename StorageIndex>
   101     template <
typename MatrixType>
   102     void operator()(
const MatrixType& , PermutationType& perm)
   117 template<
typename StorageIndex>
   121     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; 
   122     typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
   127     template <
typename MatrixType>
   128     void operator() (
const MatrixType& mat, PermutationType& perm)
   130       eigen_assert(mat.isCompressed() && 
"COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
   132       StorageIndex m = StorageIndex(mat.rows());
   133       StorageIndex n = StorageIndex(mat.cols());
   134       StorageIndex nnz = StorageIndex(mat.nonZeros());
   142       IndexVector p(n+1), A(Alen); 
   143       for(StorageIndex i=0; i <= n; i++)   p(i) = mat.outerIndexPtr()[i];
   144       for(StorageIndex i=0; i < nnz; i++)  A(i) = mat.innerIndexPtr()[i];
   146       StorageIndex info = 
internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); 
   151       for (StorageIndex i = 0; i < n; i++) perm.
indices()(p(i)) = i;
 
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. 
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
void ordering_helper_at_plus_a(const MatrixType &A, MatrixType &symmat)
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
const IndicesType & indices() const
IndexType colamd_recommended(IndexType nnz, IndexType n_row, IndexType n_col)
Returns the recommended value of Alen. 
void minimum_degree_ordering(SparseMatrix< Scalar, ColMajor, StorageIndex > &C, PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm)
static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS])
Computes a column ordering using the column approximate minimum degree ordering. 
static void colamd_set_defaults(double knobs[COLAMD_KNOBS])
set default parameters The use of this routine is optional. 
void operator()(const SparseSelfAdjointView< SrcType, SrcUpLo > &mat, PermutationType &perm)
void resize(Index newSize)
#define EIGEN_UNUSED_VARIABLE(var)