10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H    11 #define EIGEN_GENERAL_MATRIX_MATRIX_H    22   typename LhsScalar, 
int LhsStorageOrder, 
bool ConjugateLhs,
    23   typename RhsScalar, 
int RhsStorageOrder, 
bool ConjugateRhs>
    31     const LhsScalar* lhs, 
Index lhsStride,
    32     const RhsScalar* rhs, 
Index rhsStride,
    33     ResScalar* res, 
Index resStride,
    43     ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
    51   typename LhsScalar, 
int LhsStorageOrder, 
bool ConjugateLhs,
    52   typename RhsScalar, 
int RhsStorageOrder, 
bool ConjugateRhs>
    60   const LhsScalar* _lhs, 
Index lhsStride,
    61   const RhsScalar* _rhs, 
Index rhsStride,
    62   ResScalar* _res, 
Index resStride,
    70   LhsMapper lhs(_lhs,lhsStride);
    71   RhsMapper rhs(_rhs,rhsStride);
    72   ResMapper res(_res, resStride);
    82 #ifdef EIGEN_HAS_OPENMP    86     Index tid = omp_get_thread_num();
    87     Index threads = omp_get_num_threads();
    89     LhsScalar* blockA = blocking.
blockA();
    92     std::size_t sizeB = kc*nc;
    96     for(
Index k=0; k<depth; k+=kc)
   102       pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc);
   110       while(info[tid].users!=0) {}
   111       info[tid].users += threads;
   113       pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);
   119       for(
Index shift=0; shift<threads; ++shift)
   121         Index i = (tid+shift)%threads;
   127           while(info[i].sync!=k) {
   131         gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
   135       for(
Index j=nc; j<cols; j+=nc)
   140         pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc);
   143         gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha);
   148       for(
Index i=0; i<threads; ++i)
   154 #endif // EIGEN_HAS_OPENMP   159     std::size_t sizeA = kc*mc;
   160     std::size_t sizeB = kc*nc;
   165     const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;
   168     for(
Index i2=0; i2<rows; i2+=mc)
   172       for(
Index k2=0; k2<depth; k2+=kc)
   180         pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);
   183         for(
Index j2=0; j2<cols; j2+=nc)
   190           if((!pack_rhs_once) || i2==0)
   191             pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);
   194           gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
   208 template<
typename Scalar, 
typename Index, 
typename Gemm, 
typename Lhs, 
typename Rhs, 
typename Dest, 
typename BlockingType>
   211   gemm_functor(
const Lhs& lhs, 
const Rhs& rhs, Dest& dest, 
const Scalar& actualAlpha, BlockingType& blocking)
   212     : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
   217     m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads);
   218     m_blocking.allocateA();
   226     Gemm::run(rows, cols, m_lhs.cols(),
   227               &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
   228               &m_rhs.coeffRef(0,
col), m_rhs.outerStride(),
   229               (Scalar*)&(m_dest.coeffRef(row,
col)), m_dest.outerStride(),
   230               m_actualAlpha, m_blocking, info);
   243 template<
int StorageOrder, 
typename LhsScalar, 
typename RhsScalar, 
int MaxRows, 
int MaxCols, 
int MaxDepth, 
int KcFactor=1,
   246 template<
typename _LhsScalar, 
typename _RhsScalar>
   263       : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0)
   270     inline LhsScalar* 
blockA() { 
return m_blockA; }
   271     inline RhsScalar* 
blockB() { 
return m_blockB; }
   274 template<
int StorageOrder, 
typename _LhsScalar, 
typename _RhsScalar, 
int MaxRows, 
int MaxCols, 
int MaxDepth, 
int KcFactor>
   277       typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
   278       typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
   289       SizeA = ActualRows * MaxDepth,
   290       SizeB = ActualCols * MaxDepth
   293 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES   305       this->m_mc = ActualRows;
   306       this->m_nc = ActualCols;
   307       this->m_kc = MaxDepth;
   308 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES   309       this->m_blockA = m_staticA;
   310       this->m_blockB = m_staticB;
   325 template<
int StorageOrder, 
typename _LhsScalar, 
typename _RhsScalar, 
int MaxRows, 
int MaxCols, 
int MaxDepth, 
int KcFactor>
   328       typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
   329       typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
   351         computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
   355         Index n = this->m_nc;
   356         computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads);
   359       m_sizeA = this->m_mc * this->m_kc;
   360       m_sizeB = this->m_kc * this->m_nc;
   370       Index m = this->m_mc;
   371       computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
   372       m_sizeA = this->m_mc * this->m_kc;
   373       m_sizeB = this->m_kc * this->m_nc;
   378       if(this->m_blockA==0)
   379         this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
   384       if(this->m_blockB==0)
   385         this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
   405 template<
typename Lhs, 
typename Rhs>
   427   template<
typename Dst>
   428   static void evalTo(Dst& dst, 
const Lhs& lhs, 
const Rhs& rhs)
   430     if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
   431       lazyproduct::evalTo(dst, lhs, rhs);
   435       scaleAndAddTo(dst, lhs, rhs, Scalar(1));
   439   template<
typename Dst>
   440   static void addTo(Dst& dst, 
const Lhs& lhs, 
const Rhs& rhs)
   442     if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
   443       lazyproduct::addTo(dst, lhs, rhs);
   445       scaleAndAddTo(dst,lhs, rhs, Scalar(1));
   448   template<
typename Dst>
   449   static void subTo(Dst& dst, 
const Lhs& lhs, 
const Rhs& rhs)
   451     if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
   452       lazyproduct::subTo(dst, lhs, rhs);
   454       scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
   457   template<
typename Dest>
   458   static void scaleAndAddTo(Dest& dst, 
const Lhs& a_lhs, 
const Rhs& a_rhs, 
const Scalar& alpha)
   460     eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
   461     if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0)
   467     Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
   468                                * RhsBlasTraits::extractScalarFactor(a_rhs);
   471             Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
   477         LhsScalar, (ActualLhsTypeCleaned::Flags&
RowMajorBit) ? 
RowMajor : ColMajor, 
bool(LhsBlasTraits::NeedToConjugate),
   478         RhsScalar, (ActualRhsTypeCleaned::Flags&
RowMajorBit) ? 
RowMajor : ColMajor, 
bool(RhsBlasTraits::NeedToConjugate),
   480       ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
   482     BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, 
true);
   483     internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==
Dynamic)>
   484         (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&
RowMajorBit);
   492 #endif // EIGEN_GENERAL_MATRIX_MATRIX_H void initParallel(Index rows, Index cols, Index depth, Index num_threads)
gebp_traits< LhsScalar, RhsScalar > Traits
gemm_blocking_space(Index, Index, Index, Index, bool)
#define EIGEN_STRONG_INLINE
gebp_traits< LhsScalar, RhsScalar > Traits
internal::remove_all< ActualRhsType >::type ActualRhsTypeCleaned
void initParallelSession(Index num_threads) const
Expression of the product of two arbitrary matrices or vectors. 
ScalarBinaryOpTraits< LhsScalar, RhsScalar >::ReturnType ResScalar
RhsBlasTraits::DirectLinearAccessType ActualRhsType
static EIGEN_STRONG_INLINE void run(Index rows, Index cols, Index depth, const LhsScalar *lhs, Index lhsStride, const RhsScalar *rhs, Index rhsStride, ResScalar *res, Index resStride, ResScalar alpha, level3_blocking< RhsScalar, LhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
Expression of the transpose of a matrix. 
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col(). */. 
conditional< Transpose, _LhsScalar, _RhsScalar >::type RhsScalar
internal::remove_all< ActualLhsType >::type ActualLhsTypeCleaned
static void subTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
void initParallel(Index, Index, Index, Index)
const unsigned int RowMajorBit
gemm_functor(const Lhs &lhs, const Rhs &rhs, Dest &dest, const Scalar &actualAlpha, BlockingType &blocking)
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
ScalarBinaryOpTraits< LhsScalar, RhsScalar >::ReturnType ResScalar
conditional< Transpose, _RhsScalar, _LhsScalar >::type LhsScalar
#define EIGEN_DEFAULT_ALIGN_BYTES
internal::blas_traits< Rhs > RhsBlasTraits
conditional< Transpose, _RhsScalar, _LhsScalar >::type LhsScalar
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API. 
conditional< Transpose, _LhsScalar, _RhsScalar >::type RhsScalar
gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
gebp_traits< RhsScalar, LhsScalar > Traits
EIGEN_DEVICE_FUNC void aligned_delete(T *ptr, size_t size)
internal::blas_traits< Lhs > LhsBlasTraits
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
static void evalTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
gebp_traits< LhsScalar, RhsScalar > Traits
LhsBlasTraits::DirectLinearAccessType ActualLhsType
static void addTo(Dst &dst, const Lhs &lhs, const Rhs &rhs)
EIGEN_DEVICE_FUNC RowXpr row(Index i)
This is the const version of row(). */. 
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
BlockingType & m_blocking
static void run(Index rows, Index cols, Index depth, const LhsScalar *_lhs, Index lhsStride, const RhsScalar *_rhs, Index rhsStride, ResScalar *_res, Index resStride, ResScalar alpha, level3_blocking< LhsScalar, RhsScalar > &blocking, GemmParallelInfo< Index > *info=0)
static void scaleAndAddTo(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar &alpha)
#define eigen_internal_assert(x)
generic_product_impl< Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode > lazyproduct
Product< Lhs, Rhs >::Scalar Scalar
#define EIGEN_UNUSED_VARIABLE(var)