10 #ifndef EIGEN_ANGLEAXIS_H    11 #define EIGEN_ANGLEAXIS_H    48 template<
typename _Scalar>
    55   using Base::operator*;
    78   template<
typename Derived>
    84   template<
typename QuatDerived> 
    87   template<
typename Derived>
    91   EIGEN_DEVICE_FUNC Scalar 
angle()
 const { 
return m_angle; }
    93   EIGEN_DEVICE_FUNC Scalar& 
angle() { 
return m_angle; }
    96   EIGEN_DEVICE_FUNC 
const Vector3& 
axis()
 const { 
return m_axis; }
   101   EIGEN_DEVICE_FUNC Vector3& 
axis() { 
return m_axis; }
   105   { 
return QuaternionType(*
this) * QuaternionType(other); }
   108   EIGEN_DEVICE_FUNC 
inline QuaternionType 
operator* (
const QuaternionType& other)
 const   109   { 
return QuaternionType(*
this) * other; }
   112   friend EIGEN_DEVICE_FUNC 
inline QuaternionType 
operator* (
const QuaternionType& a, 
const AngleAxis& b)
   113   { 
return a * QuaternionType(b); }
   119   template<
class QuatDerived>
   121   template<
typename Derived>
   124   template<
typename Derived>
   133   template<
typename NewScalarType>
   138   template<
typename OtherScalarType>
   141     m_axis = other.
axis().template cast<Scalar>();
   142     m_angle = Scalar(other.
angle());
   152   { 
return m_axis.isApprox(other.
m_axis, prec) && internal::isApprox(m_angle,other.
m_angle, prec); }
   168 template<
typename Scalar>
   169 template<
typename QuatDerived>
   172   EIGEN_USING_STD_MATH(atan2)
   173   EIGEN_USING_STD_MATH(
abs)
   174   Scalar n = q.
vec().norm();
   176     n = q.
vec().stableNorm();
   180     m_angle = Scalar(2)*atan2(n, 
abs(q.
w()));
   183     m_axis  = q.
vec() / n;
   188     m_axis << Scalar(1), Scalar(0), Scalar(0);
   195 template<
typename Scalar>
   196 template<
typename Derived>
   201   return *
this = QuaternionType(mat);
   207 template<
typename Scalar>
   208 template<
typename Derived>
   211   return *
this = QuaternionType(mat);
   216 template<
typename Scalar>
   220   EIGEN_USING_STD_MATH(
sin)
   221   EIGEN_USING_STD_MATH(
cos)
   223   Vector3 sin_axis  = 
sin(m_angle) * m_axis;
   224   Scalar c = 
cos(m_angle);
   225   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
   228   tmp = cos1_axis.x() * m_axis.y();
   229   res.
coeffRef(0,1) = tmp - sin_axis.z();
   230   res.
coeffRef(1,0) = tmp + sin_axis.z();
   232   tmp = cos1_axis.x() * m_axis.z();
   233   res.
coeffRef(0,2) = tmp + sin_axis.y();
   234   res.
coeffRef(2,0) = tmp - sin_axis.y();
   236   tmp = cos1_axis.y() * m_axis.z();
   237   res.
coeffRef(1,2) = tmp - sin_axis.x();
   238   res.
coeffRef(2,1) = tmp + sin_axis.x();
   240   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
   247 #endif // EIGEN_ANGLEAXIS_H 
EIGEN_DEVICE_FUNC const CosReturnType cos() const
EIGEN_DEVICE_FUNC AngleAxis(const MatrixBase< Derived > &m)
EIGEN_DEVICE_FUNC AngleAxis(const Scalar &angle, const MatrixBase< Derived > &axis)
static EIGEN_DEVICE_FUNC const AngleAxis Identity()
EIGEN_DEVICE_FUNC AngleAxis & operator=(const QuaternionBase< QuatDerived > &q)
EIGEN_DEVICE_FUNC const VectorBlock< const Coefficients, 3 > vec() const
Matrix< Scalar, 3, 3 > Matrix3
EIGEN_DEVICE_FUNC internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type cast() const
AngleAxis< double > AngleAxisd
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
EIGEN_DEVICE_FUNC Scalar w() const
EIGEN_DEVICE_FUNC AngleAxis()
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
static EIGEN_DEVICE_FUNC Matrix< Scalar, 2, 2 > toRotationMatrix(const Scalar &s)
EIGEN_DEVICE_FUNC Scalar angle() const
AngleAxis< float > AngleAxisf
Common base class for compact rotation representations. 
Base class for quaternion expressions. 
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > operator*(const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
Matrix< Scalar, 3, 1 > Vector3
EIGEN_DEVICE_FUNC const Vector3 & axis() const
EIGEN_DEVICE_FUNC AngleAxis & fromRotationMatrix(const MatrixBase< Derived > &m)
EIGEN_DEVICE_FUNC AngleAxis inverse() const
The quaternion class used to represent 3D orientations and rotations. 
Quaternion< Scalar > QuaternionType
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const
EIGEN_DEVICE_FUNC Vector3 & axis()
EIGEN_DEVICE_FUNC Scalar & angle()
The matrix class, also used for vectors and row-vectors. 
EIGEN_DEVICE_FUNC AngleAxis(const QuaternionBase< QuatDerived > &q)
Base class for all dense matrices, vectors, and expressions. 
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. 
EIGEN_DEVICE_FUNC AngleAxis(const AngleAxis< OtherScalarType > &other)
EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
RotationBase< AngleAxis< _Scalar >, 3 > Base
EIGEN_DEVICE_FUNC const SinReturnType sin() const