optimal_importance_density.h
Go to the documentation of this file.
1 // $Id$
2 // Copyright (C) 2003 Klaas Gadeyne <first dot last at gmail dot com>
3 //
4 // This program is free software; you can redistribute it and/or modify
5 // it under the terms of the GNU Lesser General Public License as published by
6 // the Free Software Foundation; either version 2.1 of the License, or
7 // (at your option) any later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU Lesser General Public License for more details.
13 //
14 // You should have received a copy of the GNU Lesser General Public License
15 // along with this program; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 //
18 
19 #ifndef __OPTIMAL_IMPORTANCE_DENSITY__
20 #define __OPTIMAL_IMPORTANCE_DENSITY__
21 
23 
24 namespace BFL
25 {
27 
38  {
39  public:
41 
46 
47  // Default copy constructor
48 
50  virtual ~OptimalImportanceDensity();
51 
52  // redefine pure virtual functions
53  virtual ColumnVector ExpectedValueGet() const;
54  virtual SymmetricMatrix CovarianceGet() const;
55  virtual Matrix dfGet(int i) const;
56 
57  private:
60 
61  };
62 
63 } // End namespace BFL
64 
66 
67 #endif // __OPTIMAL_IMPORTANCE_DENSITY__
virtual ColumnVector ExpectedValueGet() const
Get the expected value E[x] of the pdf.
Optimal importance density for Nonlinear Gaussian SS Models.
virtual ~OptimalImportanceDensity()
Destructor.
virtual Matrix dfGet(int i) const
virtual SymmetricMatrix CovarianceGet() const
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf.
LinearAnalyticConditionalGaussian * _MeasPdf
AnalyticConditionalGaussian * _SystemPdf
OptimalImportanceDensity(AnalyticConditionalGaussian *SystemPdf, LinearAnalyticConditionalGaussian *MeasPdf)
Constructor.
Abstract Class representing all FULL Analytical Conditional gaussians.


bfl
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. ROS package maintained by Wim Meeussen.
autogenerated on Mon Feb 28 2022 21:56:33