Class representing Gaussian (or normal density)
More...
#include <gaussian.h>
|
virtual Gaussian * | Clone () const |
| Clone function. More...
|
|
virtual MatrixWrapper::SymmetricMatrix | CovarianceGet () const |
| Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf. More...
|
|
void | CovarianceSet (const MatrixWrapper::SymmetricMatrix &cov) |
| Set the Covariance Matrix. More...
|
|
virtual MatrixWrapper::ColumnVector | ExpectedValueGet () const |
| Get the expected value E[x] of the pdf. More...
|
|
void | ExpectedValueSet (const MatrixWrapper::ColumnVector &mu) |
| Set the Expected Value. More...
|
|
| Gaussian (const MatrixWrapper::ColumnVector &Mu, const MatrixWrapper::SymmetricMatrix &Sigma) |
| Constructor. More...
|
|
| Gaussian (int dimension=0) |
| constructor with only dimensions or nothing More...
|
|
virtual Probability | ProbabilityGet (const MatrixWrapper::ColumnVector &input) const |
| Get the probability of a certain argument. More...
|
|
bool | SampleFrom (vector< Sample< MatrixWrapper::ColumnVector > > &list_samples, const int num_samples, int method=DEFAULT, void *args=NULL) const |
|
virtual bool | SampleFrom (Sample< MatrixWrapper::ColumnVector > &one_sample, int method=DEFAULT, void *args=NULL) const |
|
virtual | ~Gaussian () |
| Default Copy Constructor will do. More...
|
|
unsigned int | DimensionGet () const |
| Get the dimension of the argument. More...
|
|
virtual void | DimensionSet (unsigned int dim) |
| Set the dimension of the argument. More...
|
|
| Pdf (unsigned int dimension=0) |
| Constructor. More...
|
|
virtual bool | SampleFrom (vector< Sample< MatrixWrapper::ColumnVector > > &list_samples, const unsigned int num_samples, int method=DEFAULT, void *args=NULL) const |
| Draw multiple samples from the Pdf (overloaded) More...
|
|
virtual bool | SampleFrom (Sample< MatrixWrapper::ColumnVector > &one_sample, int method=DEFAULT, void *args=NULL) const |
| Draw 1 sample from the Pdf: More...
|
|
virtual | ~Pdf () |
| Destructor. More...
|
|
Class representing Gaussian (or normal density)
Definition at line 27 of file gaussian.h.
◆ Gaussian() [1/2]
BFL::Gaussian::Gaussian |
( |
const MatrixWrapper::ColumnVector & |
Mu, |
|
|
const MatrixWrapper::SymmetricMatrix & |
Sigma |
|
) |
| |
◆ Gaussian() [2/2]
BFL::Gaussian::Gaussian |
( |
int |
dimension = 0 | ) |
|
constructor with only dimensions or nothing
Definition at line 46 of file gaussian.cpp.
◆ ~Gaussian()
BFL::Gaussian::~Gaussian |
( |
| ) |
|
|
virtual |
Default Copy Constructor will do.
Destructor
Definition at line 60 of file gaussian.cpp.
◆ Clone()
Gaussian * BFL::Gaussian::Clone |
( |
| ) |
const |
|
virtual |
◆ CovarianceGet()
SymmetricMatrix BFL::Gaussian::CovarianceGet |
( |
| ) |
const |
|
virtual |
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf.
Get first order statistic (Covariance) of this AnalyticPdf
- Returns
- The Covariance of the Pdf (a SymmetricMatrix of dim DIMENSION)
- Todo:
- extend this more general to n-th order statistic
- Bug:
- Discrete pdfs should not be able to use this!
Reimplemented from BFL::BFL::Pdf< MatrixWrapper::ColumnVector >.
Definition at line 187 of file gaussian.cpp.
◆ CovarianceSet()
void BFL::Gaussian::CovarianceSet |
( |
const MatrixWrapper::SymmetricMatrix & |
cov | ) |
|
Set the Covariance Matrix.
Set the Covariance Matrix
- Parameters
-
cov | The new Covariance matrix |
Definition at line 204 of file gaussian.cpp.
◆ ExpectedValueGet()
ColumnVector BFL::Gaussian::ExpectedValueGet |
( |
| ) |
const |
|
virtual |
Get the expected value E[x] of the pdf.
Get low order statistic (Expected Value) of this AnalyticPdf
- Returns
- The Expected Value of the Pdf (a ColumnVector with DIMENSION rows)
- Note
- No set functions here! This can be useful for analytic functions, but not for sample based representations!
-
For certain discrete Pdfs, this function has no meaning, what is the average between yes and no?
Reimplemented from BFL::BFL::Pdf< MatrixWrapper::ColumnVector >.
Definition at line 181 of file gaussian.cpp.
◆ ExpectedValueSet()
void BFL::Gaussian::ExpectedValueSet |
( |
const MatrixWrapper::ColumnVector & |
mu | ) |
|
Set the Expected Value.
Set the Expected Value
- Parameters
-
Definition at line 193 of file gaussian.cpp.
◆ ProbabilityGet()
Probability BFL::Gaussian::ProbabilityGet |
( |
const MatrixWrapper::ColumnVector & |
input | ) |
const |
|
virtual |
◆ SampleFrom() [1/2]
bool BFL::Gaussian::SampleFrom |
( |
vector< Sample< MatrixWrapper::ColumnVector > > & |
list_samples, |
|
|
const int |
num_samples, |
|
|
int |
method = DEFAULT , |
|
|
void * |
args = NULL |
|
) |
| const |
◆ SampleFrom() [2/2]
virtual bool BFL::Gaussian::SampleFrom |
( |
Sample< MatrixWrapper::ColumnVector > & |
one_sample, |
|
|
int |
method = DEFAULT , |
|
|
void * |
args = NULL |
|
) |
| const |
|
virtual |
◆ operator<<
std::ostream& operator<< |
( |
std::ostream & |
os, |
|
|
const Gaussian & |
g |
|
) |
| |
|
friend |
◆ _diff
ColumnVector BFL::Gaussian::_diff |
|
mutableprivate |
◆ _Low_triangle
Matrix BFL::Gaussian::_Low_triangle |
|
mutableprivate |
◆ _Mu
MatrixWrapper::ColumnVector BFL::Gaussian::_Mu |
|
private |
◆ _samples
ColumnVector BFL::Gaussian::_samples |
|
mutableprivate |
◆ _sampleValue
ColumnVector BFL::Gaussian::_sampleValue |
|
mutableprivate |
◆ _Sigma
MatrixWrapper::SymmetricMatrix BFL::Gaussian::_Sigma |
|
private |
◆ _Sigma_changed
bool BFL::Gaussian::_Sigma_changed |
|
mutableprivate |
◆ _Sigma_inverse
MatrixWrapper::SymmetricMatrix BFL::Gaussian::_Sigma_inverse |
|
mutableprivate |
◆ _sqrt_pow
double BFL::Gaussian::_sqrt_pow |
|
mutableprivate |
◆ _tempColumn
ColumnVector BFL::Gaussian::_tempColumn |
|
mutableprivate |
The documentation for this class was generated from the following files:
bfl
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. ROS package maintained by Wim Meeussen.
autogenerated on Mon Feb 28 2022 21:56:34