clock.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/time/clock.h"
16 
17 #include "absl/base/attributes.h"
18 
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 
23 #include <algorithm>
24 #include <atomic>
25 #include <cerrno>
26 #include <cstdint>
27 #include <ctime>
28 #include <limits>
29 
32 #include "absl/base/macros.h"
33 #include "absl/base/port.h"
35 
36 namespace absl {
37 Time Now() {
38  // TODO(bww): Get a timespec instead so we don't have to divide.
39  int64_t n = absl::GetCurrentTimeNanos();
40  if (n >= 0) {
42  time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
43  }
45 }
46 } // namespace absl
47 
48 // Decide if we should use the fast GetCurrentTimeNanos() algorithm
49 // based on the cyclecounter, otherwise just get the time directly
50 // from the OS on every call. This can be chosen at compile-time via
51 // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
52 #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
53 #if ABSL_USE_UNSCALED_CYCLECLOCK
54 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1
55 #else
56 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
57 #endif
58 #endif
59 
60 #if defined(__APPLE__) || defined(_WIN32)
61 #include "absl/time/internal/get_current_time_chrono.inc"
62 #else
63 #include "absl/time/internal/get_current_time_posix.inc"
64 #endif
65 
66 // Allows override by test.
67 #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
68 #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
69  ::absl::time_internal::GetCurrentTimeNanosFromSystem()
70 #endif
71 
72 #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
73 namespace absl {
76 }
77 } // namespace absl
78 #else // Use the cyclecounter-based implementation below.
79 
80 // Allows override by test.
81 #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
82 #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
83  ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
84 #endif
85 
86 // The following counters are used only by the test code.
87 static int64_t stats_initializations;
88 static int64_t stats_reinitializations;
89 static int64_t stats_calibrations;
90 static int64_t stats_slow_paths;
91 static int64_t stats_fast_slow_paths;
92 
93 namespace absl {
94 namespace time_internal {
95 // This is a friend wrapper around UnscaledCycleClock::Now()
96 // (needed to access UnscaledCycleClock).
97 class UnscaledCycleClockWrapperForGetCurrentTime {
98  public:
99  static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
100 };
101 } // namespace time_internal
102 
103 // uint64_t is used in this module to provide an extra bit in multiplications
104 
105 // Return the time in ns as told by the kernel interface. Place in *cycleclock
106 // the value of the cycleclock at about the time of the syscall.
107 // This call represents the time base that this module synchronizes to.
108 // Ensures that *cycleclock does not step back by up to (1 << 16) from
109 // last_cycleclock, to discard small backward counter steps. (Larger steps are
110 // assumed to be complete resyncs, which shouldn't happen. If they do, a full
111 // reinitialization of the outer algorithm should occur.)
112 static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
113  uint64_t *cycleclock) {
114  // We try to read clock values at about the same time as the kernel clock.
115  // This value gets adjusted up or down as estimate of how long that should
116  // take, so we can reject attempts that take unusually long.
117  static std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
118 
119  uint64_t local_approx_syscall_time_in_cycles = // local copy
120  approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
121 
122  int64_t current_time_nanos_from_system;
123  uint64_t before_cycles;
124  uint64_t after_cycles;
125  uint64_t elapsed_cycles;
126  int loops = 0;
127  do {
128  before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
129  current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
130  after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
131  // elapsed_cycles is unsigned, so is large on overflow
132  elapsed_cycles = after_cycles - before_cycles;
133  if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
134  ++loops == 20) { // clock changed frequencies? Back off.
135  loops = 0;
136  if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
137  local_approx_syscall_time_in_cycles =
138  (local_approx_syscall_time_in_cycles + 1) << 1;
139  }
140  approx_syscall_time_in_cycles.store(
141  local_approx_syscall_time_in_cycles,
142  std::memory_order_relaxed);
143  }
144  } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
145  last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
146 
147  // Number of times in a row we've seen a kernel time call take substantially
148  // less than approx_syscall_time_in_cycles.
149  static std::atomic<uint32_t> seen_smaller{ 0 };
150 
151  // Adjust approx_syscall_time_in_cycles to be within a factor of 2
152  // of the typical time to execute one iteration of the loop above.
153  if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
154  // measured time is no smaller than half current approximation
155  seen_smaller.store(0, std::memory_order_relaxed);
156  } else if (seen_smaller.fetch_add(1, std::memory_order_relaxed) >= 3) {
157  // smaller delays several times in a row; reduce approximation by 12.5%
158  const uint64_t new_approximation =
159  local_approx_syscall_time_in_cycles -
160  (local_approx_syscall_time_in_cycles >> 3);
161  approx_syscall_time_in_cycles.store(new_approximation,
162  std::memory_order_relaxed);
163  seen_smaller.store(0, std::memory_order_relaxed);
164  }
165 
166  *cycleclock = after_cycles;
167  return current_time_nanos_from_system;
168 }
169 
170 
171 // ---------------------------------------------------------------------
172 // An implementation of reader-write locks that use no atomic ops in the read
173 // case. This is a generalization of Lamport's method for reading a multiword
174 // clock. Increment a word on each write acquisition, using the low-order bit
175 // as a spinlock; the word is the high word of the "clock". Readers read the
176 // high word, then all other data, then the high word again, and repeat the
177 // read if the reads of the high words yields different answers, or an odd
178 // value (either case suggests possible interference from a writer).
179 // Here we use a spinlock to ensure only one writer at a time, rather than
180 // spinning on the bottom bit of the word to benefit from SpinLock
181 // spin-delay tuning.
182 
183 // Acquire seqlock (*seq) and return the value to be written to unlock.
184 static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
185  uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
186 
187  // We put a release fence between update to *seq and writes to shared data.
188  // Thus all stores to shared data are effectively release operations and
189  // update to *seq above cannot be re-ordered past any of them. Note that
190  // this barrier is not for the fetch_add above. A release barrier for the
191  // fetch_add would be before it, not after.
192  std::atomic_thread_fence(std::memory_order_release);
193 
194  return x + 2; // original word plus 2
195 }
196 
197 // Release seqlock (*seq) by writing x to it---a value previously returned by
198 // SeqAcquire.
199 static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
200  // The unlock store to *seq must have release ordering so that all
201  // updates to shared data must finish before this store.
202  seq->store(x, std::memory_order_release); // release lock for readers
203 }
204 
205 // ---------------------------------------------------------------------
206 
207 // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
208 enum { kScale = 30 };
209 
210 // The minimum interval between samples of the time base.
211 // We pick enough time to amortize the cost of the sample,
212 // to get a reasonably accurate cycle counter rate reading,
213 // and not so much that calculations will overflow 64-bits.
214 static const uint64_t kMinNSBetweenSamples = 2000 << 20;
215 
216 // We require that kMinNSBetweenSamples shifted by kScale
217 // have at least a bit left over for 64-bit calculations.
218 static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
219  kMinNSBetweenSamples,
220  "cannot represent kMaxBetweenSamplesNSScaled");
221 
222 // A reader-writer lock protecting the static locations below.
223 // See SeqAcquire() and SeqRelease() above.
226 static std::atomic<uint64_t> seq(0);
227 
228 // data from a sample of the kernel's time value
229 struct TimeSampleAtomic {
230  std::atomic<uint64_t> raw_ns; // raw kernel time
231  std::atomic<uint64_t> base_ns; // our estimate of time
232  std::atomic<uint64_t> base_cycles; // cycle counter reading
233  std::atomic<uint64_t> nsscaled_per_cycle; // cycle period
234  // cycles before we'll sample again (a scaled reciprocal of the period,
235  // to avoid a division on the fast path).
236  std::atomic<uint64_t> min_cycles_per_sample;
237 };
238 // Same again, but with non-atomic types
239 struct TimeSample {
240  uint64_t raw_ns; // raw kernel time
241  uint64_t base_ns; // our estimate of time
242  uint64_t base_cycles; // cycle counter reading
243  uint64_t nsscaled_per_cycle; // cycle period
244  uint64_t min_cycles_per_sample; // approx cycles before next sample
245 };
246 
247 static struct TimeSampleAtomic last_sample; // the last sample; under seq
248 
249 static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
250 
251 // Read the contents of *atomic into *sample.
252 // Each field is read atomically, but to maintain atomicity between fields,
253 // the access must be done under a lock.
254 static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
255  struct TimeSample *sample) {
256  sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
257  sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
258  sample->nsscaled_per_cycle =
259  atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
260  sample->min_cycles_per_sample =
261  atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
262  sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
263 }
264 
265 // Public routine.
266 // Algorithm: We wish to compute real time from a cycle counter. In normal
267 // operation, we construct a piecewise linear approximation to the kernel time
268 // source, using the cycle counter value. The start of each line segment is at
269 // the same point as the end of the last, but may have a different slope (that
270 // is, a different idea of the cycle counter frequency). Every couple of
271 // seconds, the kernel time source is sampled and compared with the current
272 // approximation. A new slope is chosen that, if followed for another couple
273 // of seconds, will correct the error at the current position. The information
274 // for a sample is in the "last_sample" struct. The linear approximation is
275 // estimated_time = last_sample.base_ns +
276 // last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
277 // (ns_per_cycle is actually stored in different units and scaled, to avoid
278 // overflow). The base_ns of the next linear approximation is the
279 // estimated_time using the last approximation; the base_cycles is the cycle
280 // counter value at that time; the ns_per_cycle is the number of ns per cycle
281 // measured since the last sample, but adjusted so that most of the difference
282 // between the estimated_time and the kernel time will be corrected by the
283 // estimated time to the next sample. In normal operation, this algorithm
284 // relies on:
285 // - the cycle counter and kernel time rates not changing a lot in a few
286 // seconds.
287 // - the client calling into the code often compared to a couple of seconds, so
288 // the time to the next correction can be estimated.
289 // Any time ns_per_cycle is not known, a major error is detected, or the
290 // assumption about frequent calls is violated, the implementation returns the
291 // kernel time. It records sufficient data that a linear approximation can
292 // resume a little later.
293 
294 int64_t GetCurrentTimeNanos() {
295  // read the data from the "last_sample" struct (but don't need raw_ns yet)
296  // The reads of "seq" and test of the values emulate a reader lock.
297  uint64_t base_ns;
298  uint64_t base_cycles;
299  uint64_t nsscaled_per_cycle;
300  uint64_t min_cycles_per_sample;
301  uint64_t seq_read0;
302  uint64_t seq_read1;
303 
304  // If we have enough information to interpolate, the value returned will be
305  // derived from this cycleclock-derived time estimate. On some platforms
306  // (POWER) the function to retrieve this value has enough complexity to
307  // contribute to register pressure - reading it early before initializing
308  // the other pieces of the calculation minimizes spill/restore instructions,
309  // minimizing icache cost.
310  uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
311 
312  // Acquire pairs with the barrier in SeqRelease - if this load sees that
313  // store, the shared-data reads necessarily see that SeqRelease's updates
314  // to the same shared data.
315  seq_read0 = seq.load(std::memory_order_acquire);
316 
317  base_ns = last_sample.base_ns.load(std::memory_order_relaxed);
318  base_cycles = last_sample.base_cycles.load(std::memory_order_relaxed);
319  nsscaled_per_cycle =
320  last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
321  min_cycles_per_sample =
322  last_sample.min_cycles_per_sample.load(std::memory_order_relaxed);
323 
324  // This acquire fence pairs with the release fence in SeqAcquire. Since it
325  // is sequenced between reads of shared data and seq_read1, the reads of
326  // shared data are effectively acquiring.
327  std::atomic_thread_fence(std::memory_order_acquire);
328 
329  // The shared-data reads are effectively acquire ordered, and the
330  // shared-data writes are effectively release ordered. Therefore if our
331  // shared-data reads see any of a particular update's shared-data writes,
332  // seq_read1 is guaranteed to see that update's SeqAcquire.
333  seq_read1 = seq.load(std::memory_order_relaxed);
334 
335  // Fast path. Return if min_cycles_per_sample has not yet elapsed since the
336  // last sample, and we read a consistent sample. The fast path activates
337  // only when min_cycles_per_sample is non-zero, which happens when we get an
338  // estimate for the cycle time. The predicate will fail if now_cycles <
339  // base_cycles, or if some other thread is in the slow path.
340  //
341  // Since we now read now_cycles before base_ns, it is possible for now_cycles
342  // to be less than base_cycles (if we were interrupted between those loads and
343  // last_sample was updated). This is harmless, because delta_cycles will wrap
344  // and report a time much much bigger than min_cycles_per_sample. In that case
345  // we will take the slow path.
346  uint64_t delta_cycles = now_cycles - base_cycles;
347  if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
348  delta_cycles < min_cycles_per_sample) {
349  return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale);
350  }
351  return GetCurrentTimeNanosSlowPath();
352 }
353 
354 // Return (a << kScale)/b.
355 // Zero is returned if b==0. Scaling is performed internally to
356 // preserve precision without overflow.
357 static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
358  // Find maximum safe_shift so that
359  // 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow.
360  int safe_shift = kScale;
361  while (((a << safe_shift) >> safe_shift) != a) {
362  safe_shift--;
363  }
364  uint64_t scaled_b = b >> (kScale - safe_shift);
365  uint64_t quotient = 0;
366  if (scaled_b != 0) {
367  quotient = (a << safe_shift) / scaled_b;
368  }
369  return quotient;
370 }
371 
372 static uint64_t UpdateLastSample(
373  uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
374  const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
375 
376 // The slow path of GetCurrentTimeNanos(). This is taken while gathering
377 // initial samples, when enough time has elapsed since the last sample, and if
378 // any other thread is writing to last_sample.
379 //
380 // Manually mark this 'noinline' to minimize stack frame size of the fast
381 // path. Without this, sometimes a compiler may inline this big block of code
382 // into the fast path. That causes lots of register spills and reloads that
383 // are unnecessary unless the slow path is taken.
384 //
385 // TODO(absl-team): Remove this attribute when our compiler is smart enough
386 // to do the right thing.
388 static int64_t GetCurrentTimeNanosSlowPath() LOCKS_EXCLUDED(lock) {
389  // Serialize access to slow-path. Fast-path readers are not blocked yet, and
390  // code below must not modify last_sample until the seqlock is acquired.
391  lock.Lock();
392 
393  // Sample the kernel time base. This is the definition of
394  // "now" if we take the slow path.
395  static uint64_t last_now_cycles; // protected by lock
396  uint64_t now_cycles;
397  uint64_t now_ns = GetCurrentTimeNanosFromKernel(last_now_cycles, &now_cycles);
398  last_now_cycles = now_cycles;
399 
400  uint64_t estimated_base_ns;
401 
402  // ----------
403  // Read the "last_sample" values again; this time holding the write lock.
404  struct TimeSample sample;
405  ReadTimeSampleAtomic(&last_sample, &sample);
406 
407  // ----------
408  // Try running the fast path again; another thread may have updated the
409  // sample between our run of the fast path and the sample we just read.
410  uint64_t delta_cycles = now_cycles - sample.base_cycles;
411  if (delta_cycles < sample.min_cycles_per_sample) {
412  // Another thread updated the sample. This path does not take the seqlock
413  // so that blocked readers can make progress without blocking new readers.
414  estimated_base_ns = sample.base_ns +
415  ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
416  stats_fast_slow_paths++;
417  } else {
418  estimated_base_ns =
419  UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
420  }
421 
422  lock.Unlock();
423 
424  return estimated_base_ns;
425 }
426 
427 // Main part of the algorithm. Locks out readers, updates the approximation
428 // using the new sample from the kernel, and stores the result in last_sample
429 // for readers. Returns the new estimated time.
430 static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
431  uint64_t delta_cycles,
432  const struct TimeSample *sample)
434  uint64_t estimated_base_ns = now_ns;
435  uint64_t lock_value = SeqAcquire(&seq); // acquire seqlock to block readers
436 
437  // The 5s in the next if-statement limits the time for which we will trust
438  // the cycle counter and our last sample to give a reasonable result.
439  // Errors in the rate of the source clock can be multiplied by the ratio
440  // between this limit and kMinNSBetweenSamples.
441  if (sample->raw_ns == 0 || // no recent sample, or clock went backwards
442  sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
443  now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
444  // record this sample, and forget any previously known slope.
445  last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
446  last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed);
447  last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed);
448  last_sample.nsscaled_per_cycle.store(0, std::memory_order_relaxed);
449  last_sample.min_cycles_per_sample.store(0, std::memory_order_relaxed);
450  stats_initializations++;
451  } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
452  sample->base_cycles + 100 < now_cycles) {
453  // Enough time has passed to compute the cycle time.
454  if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate.
455  // Compute time from counter reading, but avoiding overflow
456  // delta_cycles may be larger than on the fast path.
457  uint64_t estimated_scaled_ns;
458  int s = -1;
459  do {
460  s++;
461  estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
462  } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
463  (delta_cycles >> s));
464  estimated_base_ns = sample->base_ns +
465  (estimated_scaled_ns >> (kScale - s));
466  }
467 
468  // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
469  // assuming the cycle counter rate stays the same as the last interval.
470  uint64_t ns = now_ns - sample->raw_ns;
471  uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
472 
473  uint64_t assumed_next_sample_delta_cycles =
474  SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
475 
476  int64_t diff_ns = now_ns - estimated_base_ns; // estimate low by this much
477 
478  // We want to set nsscaled_per_cycle so that our estimate of the ns time
479  // at the assumed cycle time is the assumed ns time.
480  // That is, we want to set nsscaled_per_cycle so:
481  // kMinNSBetweenSamples + diff_ns ==
482  // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
483  // But we wish to damp oscillations, so instead correct only most
484  // of our current error, by solving:
485  // kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
486  // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
487  ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16);
488  uint64_t new_nsscaled_per_cycle =
489  SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
490  if (new_nsscaled_per_cycle != 0 &&
491  diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
492  // record the cycle time measurement
493  last_sample.nsscaled_per_cycle.store(
494  new_nsscaled_per_cycle, std::memory_order_relaxed);
495  uint64_t new_min_cycles_per_sample =
496  SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
497  last_sample.min_cycles_per_sample.store(
498  new_min_cycles_per_sample, std::memory_order_relaxed);
499  stats_calibrations++;
500  } else { // something went wrong; forget the slope
501  last_sample.nsscaled_per_cycle.store(0, std::memory_order_relaxed);
502  last_sample.min_cycles_per_sample.store(0, std::memory_order_relaxed);
503  estimated_base_ns = now_ns;
504  stats_reinitializations++;
505  }
506  last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
507  last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed);
508  last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed);
509  } else {
510  // have a sample, but no slope; waiting for enough time for a calibration
511  stats_slow_paths++;
512  }
513 
514  SeqRelease(&seq, lock_value); // release the readers
515 
516  return estimated_base_ns;
517 }
518 } // namespace absl
519 #endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
520 
521 namespace absl {
522 namespace {
523 
524 // Returns the maximum duration that SleepOnce() can sleep for.
525 constexpr absl::Duration MaxSleep() {
526 #ifdef _WIN32
527  // Windows Sleep() takes unsigned long argument in milliseconds.
528  return absl::Milliseconds(
529  std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int)
530 #else
531  return absl::Seconds(std::numeric_limits<time_t>::max());
532 #endif
533 }
534 
535 // Sleeps for the given duration.
536 // REQUIRES: to_sleep <= MaxSleep().
537 void SleepOnce(absl::Duration to_sleep) {
538 #ifdef _WIN32
539  Sleep(to_sleep / absl::Milliseconds(1));
540 #else
541  struct timespec sleep_time = absl::ToTimespec(to_sleep);
542  while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
543  // Ignore signals and wait for the full interval to elapse.
544  }
545 #endif
546 }
547 
548 } // namespace
549 } // namespace absl
550 
551 extern "C" {
552 
554  while (duration > absl::ZeroDuration()) {
555  absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
556  absl::SleepOnce(to_sleep);
557  duration -= to_sleep;
558  }
559 }
560 
561 } // extern "C"
#define EXCLUSIVE_LOCKS_REQUIRED(...)
timespec ToTimespec(Duration d)
Definition: duration.cc:598
void Lock() EXCLUSIVE_LOCK_FUNCTION()
Definition: spinlock.h:82
Time Now()
Definition: clock.cc:37
void Unlock() UNLOCK_FUNCTION()
Definition: spinlock.h:104
constexpr Time FromUnixDuration(Duration d)
Definition: time.h:1368
Definition: algorithm.h:29
constexpr Duration Milliseconds(int64_t n)
Definition: time.h:1458
ABSL_ATTRIBUTE_WEAK void AbslInternalSleepFor(absl::Duration duration)
Definition: clock.cc:553
int64_t GetCurrentTimeNanos()
Definition: clock.cc:74
constexpr Duration MakeDuration(int64_t hi, uint32_t lo)
Definition: time.h:1313
#define LOCKS_EXCLUDED(...)
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM()
Definition: clock.cc:68
#define ABSL_ATTRIBUTE_WEAK
Definition: attributes.h:168
#define ABSL_ATTRIBUTE_NOINLINE
Definition: attributes.h:136
constexpr Duration Seconds(int64_t n)
Definition: time.h:1461
constexpr Duration Nanoseconds(int64_t n)
Definition: time.h:1452
uint64_t b
Definition: layout_test.cc:50
constexpr Duration ZeroDuration()
Definition: time.h:286
#define ABSL_ATTRIBUTE_COLD
Definition: attributes.h:471


abseil_cpp
Author(s):
autogenerated on Mon Feb 28 2022 21:31:18