rtabmap::Parameters Member List

This is the complete list of members for rtabmap::Parameters, including all inherited members.

backwardCompatibilityMap_rtabmap::Parametersprivatestatic
createDefaultWorkingDirectory()rtabmap::Parametersstatic
descriptions_rtabmap::Parametersprivatestatic
deserialize(const std::string &parameters)rtabmap::Parametersstatic
filterParameters(const ParametersMap &parameters, const std::string &group)rtabmap::Parametersstatic
getBackwardCompatibilityMap()rtabmap::Parametersstatic
getDefaultDatabaseName()rtabmap::Parametersstatic
getDefaultOdometryParameters(bool stereo=false, bool vis=true, bool icp=false)rtabmap::Parametersstatic
getDefaultParameters()rtabmap::Parametersinlinestatic
getDefaultParameters(const std::string &group)rtabmap::Parametersstatic
getDescription(const std::string &paramKey)rtabmap::Parametersstatic
getRemovedParameters()rtabmap::Parametersstatic
getType(const std::string &paramKey)rtabmap::Parametersstatic
getVersion()rtabmap::Parametersstatic
instance_rtabmap::Parametersprivatestatic
isFeatureParameter(const std::string &param)rtabmap::Parametersstatic
Parameters()rtabmap::Parametersprivate
parameters_rtabmap::Parametersprivatestatic
parametersType_rtabmap::Parametersprivatestatic
parse(const ParametersMap &parameters, const std::string &key, bool &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, const std::string &key, int &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, const std::string &key, unsigned int &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, const std::string &key, float &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, const std::string &key, double &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, const std::string &key, std::string &value)rtabmap::Parametersstatic
parse(const ParametersMap &parameters, ParametersMap &parametersOut)rtabmap::Parametersstatic
parseArguments(int argc, char *argv[], bool onlyParameters=false)rtabmap::Parametersstatic
readINI(const std::string &configFile, ParametersMap &parameters, bool modifiedOnly=false)rtabmap::Parametersstatic
removedParameters_rtabmap::Parametersprivatestatic
RTABMAP_PARAM(Rtabmap, PublishStats, bool, true,"Publishing statistics.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, PublishLastSignature, bool, true,"Publishing last signature.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, PublishPdf, bool, true,"Publishing pdf.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, PublishLikelihood, bool, true,"Publishing likelihood.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, PublishRAMUsage, bool, false,"Publishing RAM usage in statistics (may add a small overhead to get info from the system).")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, ComputeRMSE, bool, true,"Compute root mean square error (RMSE) and publish it in statistics, if ground truth is provided.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, SaveWMState, bool, false,"Save working memory state after each update in statistics.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, TimeThr, float, 0,"Maximum time allowed for map update (ms) (0 means infinity). When map update time exceeds this fixed time threshold, some nodes in Working Memory (WM) are transferred to Long-Term Memory to limit the size of the WM and decrease the update time.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, MemoryThr, int, 0, uFormat("Maximum nodes in the Working Memory (0 means infinity). Similar to \"%s\", when the number of nodes in Working Memory (WM) exceeds this treshold, some nodes are transferred to Long-Term Memory to keep WM size fixed.", kRtabmapTimeThr().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, DetectionRate, float, 1,"Detection rate (Hz). RTAB-Map will filter input images to satisfy this rate.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, ImageBufferSize, unsigned int, 1,"Data buffer size (0 min inf).")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, CreateIntermediateNodes, bool, false, uFormat("Create intermediate nodes between loop closure detection. Only used when %s>0.", kRtabmapDetectionRate().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, MaxRetrieved, unsigned int, 2,"Maximum locations retrieved at the same time from LTM.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, StatisticLogsBufferedInRAM, bool, true,"Statistic logs buffered in RAM instead of written to hard drive after each iteration.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, StatisticLogged, bool, false,"Logging enabled.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, StatisticLoggedHeaders, bool, true,"Add column header description to log files.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, StartNewMapOnLoopClosure, bool, false,"Start a new map only if there is a global loop closure with a previous map.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, StartNewMapOnGoodSignature, bool, false, uFormat("Start a new map only if the first signature is not bad (i.e., has enough features, see %s).", kKpBadSignRatio().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, ImagesAlreadyRectified, bool, true,"Images are already rectified. By default RTAB-Map assumes that received images are rectified. If they are not, they can be rectified by RTAB-Map if this parameter is false.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, RectifyOnlyFeatures, bool, false, uFormat("If \"%s\" is false and this parameter is true, the whole RGB image will not be rectified, only the features. Warning: As projection of RGB-D image to point cloud is assuming that images are rectified, the generated point cloud map will have wrong colors if this parameter is true.", kRtabmapImagesAlreadyRectified().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, LoopThr, float, 0.11,"Loop closing threshold.")rtabmap::Parametersprivate
RTABMAP_PARAM(Rtabmap, LoopRatio, float, 0,"The loop closure hypothesis must be over LoopRatio x lastHypothesisValue.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, RehearsalSimilarity, float, 0.6,"Rehearsal similarity.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, ImageKept, bool, false,"Keep raw images in RAM.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, BinDataKept, bool, true,"Keep binary data in db.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, RawDescriptorsKept, bool, true,"Raw descriptors kept in memory.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, MapLabelsAdded, bool, true,"Create map labels. The first node of a map will be labelled as \"map#\" where # is the map ID.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, SaveDepth16Format, bool, false,"Save depth image into 16 bits format to reduce memory used. Warning: values over ~65 meters are ignored (maximum 65535 millimeters).")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, NotLinkedNodesKept, bool, true,"Keep not linked nodes in db (rehearsed nodes and deleted nodes).")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, IntermediateNodeDataKept, bool, false,"Keep intermediate node data in db.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, STMSize, unsigned int, 10,"Short-term memory size.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, IncrementalMemory, bool, true,"SLAM mode, otherwise it is Localization mode.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, ReduceGraph, bool, false,"Reduce graph. Merge nodes when loop closures are added (ignoring those with user data set).")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, RecentWmRatio, float, 0.2,"Ratio of locations after the last loop closure in WM that cannot be transferred.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, TransferSortingByWeightId, bool, false,"On transfer, signatures are sorted by weight->ID only (i.e. the oldest of the lowest weighted signatures are transferred first). If false, the signatures are sorted by weight->Age->ID (i.e. the oldest inserted in WM of the lowest weighted signatures are transferred first). Note that retrieval updates the age, not the ID.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, RehearsalIdUpdatedToNewOne, bool, false,"On merge, update to new id. When false, no copy.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, RehearsalWeightIgnoredWhileMoving, bool, false,"When the robot is moving, weights are not updated on rehearsal.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, GenerateIds, bool, true,"True=Generate location IDs, False=use input image IDs.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, BadSignaturesIgnored, bool, false,"Bad signatures are ignored.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, InitWMWithAllNodes, bool, false,"Initialize the Working Memory with all nodes in Long-Term Memory. When false, it is initialized with nodes of the previous session.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, DepthAsMask, bool, true,"Use depth image as mask when extracting features for vocabulary.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, ImagePreDecimation, int, 1,"Image decimation (>=1) before features extraction. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, ImagePostDecimation, int, 1,"Image decimation (>=1) of saved data in created signatures (after features extraction). Decimation is done from the original image. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, CompressionParallelized, bool, true,"Compression of sensor data is multi-threaded.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, LaserScanDownsampleStepSize, int, 1,"If > 1, downsample the laser scans when creating a signature.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, LaserScanVoxelSize, float, 0.0, uFormat("If > 0 m, voxel filtering is done on laser scans when creating a signature. If the laser scan had normals, they will be removed. To recompute the normals, make sure to use \"%s\" or \"%s\" parameters.", kMemLaserScanNormalK().c_str(), kMemLaserScanNormalRadius().c_str()).c_str())rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, LaserScanNormalK, int, 0,"If > 0 and laser scans don't have normals, normals will be computed with K search neighbors when creating a signature.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, LaserScanNormalRadius, float, 0.0,"If > 0 m and laser scans don't have normals, normals will be computed with radius search neighbors when creating a signature.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, UseOdomFeatures, bool, true,"Use odometry features.")rtabmap::Parametersprivate
RTABMAP_PARAM(Mem, CovOffDiagIgnored, bool, true,"Ignore off diagonal values of the covariance matrix.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, NNStrategy, int, 1,"kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, IncrementalDictionary, bool, true,"")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, IncrementalFlann, bool, true, uFormat("When using FLANN based strategy, add/remove points to its index without always rebuilding the index (the index is built only when the dictionary increases of the factor \"%s\" in size).", kKpFlannRebalancingFactor().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, FlannRebalancingFactor, float, 2.0, uFormat("Factor used when rebuilding the incremental FLANN index (see \"%s\"). Set <=1 to disable.", kKpIncrementalFlann().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, MaxDepth, float, 0,"Filter extracted keypoints by depth (0=inf).")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, MinDepth, float, 0,"Filter extracted keypoints by depth.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, MaxFeatures, int, 500,"Maximum features extracted from the images (0 means not bounded, <0 means no extraction).")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, BadSignRatio, float, 0.5,"Bad signature ratio (less than Ratio x AverageWordsPerImage = bad).")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, NndrRatio, float, 0.8,"NNDR ratio (A matching pair is detected, if its distance is closer than X times the distance of the second nearest neighbor.)")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, DetectorStrategy, int, 6,"0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, TfIdfLikelihoodUsed, bool, true,"Use of the td-idf strategy to compute the likelihood.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, Parallelized, bool, true,"If the dictionary update and signature creation were parallelized.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, NewWordsComparedTogether, bool, true,"When adding new words to dictionary, they are compared also with each other (to detect same words in the same signature).")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, SubPixWinSize, int, 3,"See cv::cornerSubPix().")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, SubPixIterations, int, 0,"See cv::cornerSubPix(). 0 disables sub pixel refining.")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, SubPixEps, double, 0.02,"See cv::cornerSubPix().")rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Kp, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(DbSqlite3, InMemory, bool, false,"Using database in the memory instead of a file on the hard disk.")rtabmap::Parametersprivate
RTABMAP_PARAM(DbSqlite3, CacheSize, unsigned int, 10000,"Sqlite cache size (default is 2000).")rtabmap::Parametersprivate
RTABMAP_PARAM(DbSqlite3, JournalMode, int, 3,"0=DELETE, 1=TRUNCATE, 2=PERSIST, 3=MEMORY, 4=OFF (see sqlite3 doc : \"PRAGMA journal_mode\")")rtabmap::Parametersprivate
RTABMAP_PARAM(DbSqlite3, Synchronous, int, 0,"0=OFF, 1=NORMAL, 2=FULL (see sqlite3 doc : \"PRAGMA synchronous\")")rtabmap::Parametersprivate
RTABMAP_PARAM(DbSqlite3, TempStore, int, 2,"0=DEFAULT, 1=FILE, 2=MEMORY (see sqlite3 doc : \"PRAGMA temp_store\")")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, Extended, bool, false,"Extended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors).")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, HessianThreshold, float, 500,"Threshold for hessian keypoint detector used in SURF.")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, Octaves, int, 4,"Number of pyramid octaves the keypoint detector will use.")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, OctaveLayers, int, 2,"Number of octave layers within each octave.")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, Upright, bool, false,"Up-right or rotated features flag (true - do not compute orientation of features; false - compute orientation).")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, GpuVersion, bool, false,"GPU-SURF: Use GPU version of SURF. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.")rtabmap::Parametersprivate
RTABMAP_PARAM(SURF, GpuKeypointsRatio, float, 0.01,"Used with SURF GPU.")rtabmap::Parametersprivate
RTABMAP_PARAM(SIFT, NFeatures, int, 0,"The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast).")rtabmap::Parametersprivate
RTABMAP_PARAM(SIFT, NOctaveLayers, int, 3,"The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.")rtabmap::Parametersprivate
RTABMAP_PARAM(SIFT, ContrastThreshold, double, 0.04,"The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.")rtabmap::Parametersprivate
RTABMAP_PARAM(SIFT, EdgeThreshold, double, 10,"The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).")rtabmap::Parametersprivate
RTABMAP_PARAM(SIFT, Sigma, double, 1.6,"The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.")rtabmap::Parametersprivate
RTABMAP_PARAM(BRIEF, Bytes, int, 32,"Bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, Threshold, int, 20,"Threshold on difference between intensity of the central pixel and pixels of a circle around this pixel.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, NonmaxSuppression, bool, true,"If true, non-maximum suppression is applied to detected corners (keypoints).")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, Gpu, bool, false,"GPU-FAST: Use GPU version of FAST. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, GpuKeypointsRatio, double, 0.05,"Used with FAST GPU.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, MinThreshold, int, 7,"Minimum threshold. Used only when FAST/GridRows and FAST/GridCols are set.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, MaxThreshold, int, 200,"Maximum threshold. Used only when FAST/GridRows and FAST/GridCols are set.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, GridRows, int, 0,"Grid rows (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.")rtabmap::Parametersprivate
RTABMAP_PARAM(FAST, GridCols, int, 0,"Grid cols (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.")rtabmap::Parametersprivate
RTABMAP_PARAM(GFTT, QualityLevel, double, 0.001,"")rtabmap::Parametersprivate
RTABMAP_PARAM(GFTT, MinDistance, double, 3,"")rtabmap::Parametersprivate
RTABMAP_PARAM(GFTT, BlockSize, int, 3,"")rtabmap::Parametersprivate
RTABMAP_PARAM(GFTT, UseHarrisDetector, bool, false,"")rtabmap::Parametersprivate
RTABMAP_PARAM(GFTT, K, double, 0.04,"")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, ScaleFactor, float, 1.2,"Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, NLevels, int, 8,"The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels).")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, EdgeThreshold, int, 31,"This is size of the border where the features are not detected. It should roughly match the patchSize parameter.")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, FirstLevel, int, 0,"It should be 0 in the current implementation.")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, WTA_K, int, 2,"The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, ScoreType, int, 0,"The default HARRIS_SCORE=0 means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE=1 is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute.")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, PatchSize, int, 31,"size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger.")rtabmap::Parametersprivate
RTABMAP_PARAM(ORB, Gpu, bool, false,"GPU-ORB: Use GPU version of ORB. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.")rtabmap::Parametersprivate
RTABMAP_PARAM(FREAK, OrientationNormalized, bool, true,"Enable orientation normalization.")rtabmap::Parametersprivate
RTABMAP_PARAM(FREAK, ScaleNormalized, bool, true,"Enable scale normalization.")rtabmap::Parametersprivate
RTABMAP_PARAM(FREAK, PatternScale, float, 22,"Scaling of the description pattern.")rtabmap::Parametersprivate
RTABMAP_PARAM(FREAK, NOctaves, int, 4,"Number of octaves covered by the detected keypoints.")rtabmap::Parametersprivate
RTABMAP_PARAM(BRISK, Thresh, int, 30,"FAST/AGAST detection threshold score.")rtabmap::Parametersprivate
RTABMAP_PARAM(BRISK, Octaves, int, 3,"Detection octaves. Use 0 to do single scale.")rtabmap::Parametersprivate
RTABMAP_PARAM(BRISK, PatternScale, float, 1,"Apply this scale to the pattern used for sampling the neighbourhood of a keypoint.")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, Extended, bool, false,"Set to enable extraction of extended (128-byte) descriptor.")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, Upright, bool, false,"Set to enable use of upright descriptors (non rotation-invariant).")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, Threshold, float, 0.001,"Detector response threshold to accept point.")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, NOctaves, int, 4,"Maximum octave evolution of the image.")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, NOctaveLayers, int, 4,"Default number of sublevels per scale level.")rtabmap::Parametersprivate
RTABMAP_PARAM(KAZE, Diffusivity, int, 1,"Diffusivity type: 0=DIFF_PM_G1, 1=DIFF_PM_G2, 2=DIFF_WEICKERT or 3=DIFF_CHARBONNIER.")rtabmap::Parametersprivate
RTABMAP_PARAM(Bayes, VirtualPlacePriorThr, float, 0.9,"Virtual place prior")rtabmap::Parametersprivate
RTABMAP_PARAM(Bayes, FullPredictionUpdate, bool, false,"Regenerate all the prediction matrix on each iteration (otherwise only removed/added ids are updated).")rtabmap::Parametersprivate
RTABMAP_PARAM(VhEp, Enabled, bool, false, uFormat("Verify visual loop closure hypothesis by computing a fundamental matrix. This is done prior to transformation computation when %s is enabled.", kRGBDEnabled().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(VhEp, MatchCountMin, int, 8,"Minimum of matching visual words pairs to accept the loop hypothesis.")rtabmap::Parametersprivate
RTABMAP_PARAM(VhEp, RansacParam1, float, 3,"Fundamental matrix (see cvFindFundamentalMat()): Max distance (in pixels) from the epipolar line for a point to be inlier.")rtabmap::Parametersprivate
RTABMAP_PARAM(VhEp, RansacParam2, float, 0.99,"Fundamental matrix (see cvFindFundamentalMat()): Performance of RANSAC.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, Enabled, bool, true,"")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LinearUpdate, float, 0.1,"Minimum linear displacement (m) to update the map. Rehearsal is done prior to this, so weights are still updated.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, AngularUpdate, float, 0.1,"Minimum angular displacement (rad) to update the map. Rehearsal is done prior to this, so weights are still updated.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LinearSpeedUpdate, float, 0.0,"Maximum linear speed (m/s) to update the map (0 means not limit).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, AngularSpeedUpdate, float, 0.0,"Maximum angular speed (rad/s) to update the map (0 means not limit).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, NewMapOdomChangeDistance, float, 0,"A new map is created if a change of odometry translation greater than X m is detected (0 m = disabled).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, OptimizeFromGraphEnd, bool, false,"Optimize graph from the newest node. If false, the graph is optimized from the oldest node of the current graph (this adds an overhead computation to detect to oldest node of the current graph, but it can be useful to preserve the map referential from the oldest node). Warning when set to false: when some nodes are transferred, the first referential of the local map may change, resulting in momentary changes in robot/map position (which are annoying in teleoperation).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, OptimizeMaxError, float, 1.0, uFormat("Reject loop closures if optimization error ratio is greater than this value (0=disabled). Ratio is computed as absolute error over standard deviation of each link. This will help to detect when a wrong loop closure is added to the graph. Not compatible with \"%s\" if enabled.", kOptimizerRobust().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, SavedLocalizationIgnored, bool, false,"Ignore last saved localization pose from previous session. If true, RTAB-Map won't assume it is restarting from the same place than where it shut down previously.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, GoalReachedRadius, float, 0.5,"Goal reached radius (m).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, PlanStuckIterations, int, 0,"Mark the current goal node on the path as unreachable if it is not updated after X iterations (0=disabled). If all upcoming nodes on the path are unreachabled, the plan fails.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, PlanLinearVelocity, float, 0,"Linear velocity (m/sec) used to compute path weights.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, PlanAngularVelocity, float, 0,"Angular velocity (rad/sec) used to compute path weights.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, GoalsSavedInUserData, bool, false,"When a goal is received and processed with success, it is saved in user data of the location with this format: \"GOAL:#\".")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, MaxLocalRetrieved, unsigned int, 2,"Maximum local locations retrieved (0=disabled) near the current pose in the local map or on the current planned path (those on the planned path have priority).")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LocalRadius, float, 10,"Local radius (m) for nodes selection in the local map. This parameter is used in some approaches about the local map management.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LocalImmunizationRatio, float, 0.25,"Ratio of working memory for which local nodes are immunized from transfer.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ScanMatchingIdsSavedInLinks, bool, true,"Save scan matching IDs in link's user data.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, NeighborLinkRefining, bool, false, uFormat("When a new node is added to the graph, the transformation of its neighbor link to the previous node is refined using registration approach selected (%s).", kRegStrategy().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LoopClosureReextractFeatures, bool, false,"Extract features even if there are some already in the nodes.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, LocalBundleOnLoopClosure, bool, false,"Do local bundle adjustment with neighborhood of the loop closure.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, CreateOccupancyGrid, bool, false,"Create local occupancy grid maps. See \"Grid\" group for parameters.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityByTime, bool, false,"Detection over all locations in STM.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityBySpace, bool, true,"Detection over locations (in Working Memory) near in space.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityMaxGraphDepth, int, 50,"Maximum depth from the current/last loop closure location and the local loop closure hypotheses. Set 0 to ignore.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityMaxPaths, int, 3,"Maximum paths compared (from the most recent) for proximity detection by space. 0 means no limit.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityPathFilteringRadius, float, 1,"Path filtering radius to reduce the number of nodes to compare in a path. A path should also be inside that radius to be considered for proximity detection.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityPathMaxNeighbors, int, 0,"Maximum neighbor nodes compared on each path. Set to 0 to disable merging the laser scans.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityPathRawPosesUsed, bool, true,"When comparing to a local path, merge the scan using the odometry poses (with neighbor link optimizations) instead of the ones in the optimized local graph.")rtabmap::Parametersprivate
RTABMAP_PARAM(RGBD, ProximityAngle, float, 45,"Maximum angle (degrees) for visual proximity detection.")rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, Strategy, int, 0,"Graph optimization strategy: 0=TORO, 1=g2o and 2=GTSAM.")rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, Iterations, int, 100,"Optimization iterations.")rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, Epsilon, double, 0.00001,"Stop optimizing when the error improvement is less than this value.")rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, VarianceIgnored, bool, false,"Ignore constraints' variance. If checked, identity information matrix is used for each constraint. Otherwise, an information matrix is generated from the variance saved in the links.")rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, Robust, bool, false, uFormat("Robust graph optimization using Vertigo (only work for g2o and GTSAM optimization strategies). Not compatible with \"%s\" if enabled.", kRGBDOptimizeMaxError().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Optimizer, PriorsIgnored, bool, true,"Ignore prior constraints (global pose or GPS) while optimizing. Currently only g2o and gtsam optimization supports this.")rtabmap::Parametersprivate
RTABMAP_PARAM(g2o, Solver, int, 0,"0=csparse 1=pcg 2=cholmod 3=Eigen")rtabmap::Parametersprivate
RTABMAP_PARAM(g2o, Optimizer, int, 0,"0=Levenberg 1=GaussNewton")rtabmap::Parametersprivate
RTABMAP_PARAM(g2o, PixelVariance, double, 1.0,"Pixel variance used for bundle adjustment.")rtabmap::Parametersprivate
RTABMAP_PARAM(g2o, RobustKernelDelta, double, 8,"Robust kernel delta used for bundle adjustment (0 means don't use robust kernel). Observations with chi2 over this threshold will be ignored in the second optimization pass.")rtabmap::Parametersprivate
RTABMAP_PARAM(g2o, Baseline, double, 0.075,"When doing bundle adjustment with RGB-D data, we can set a fake baseline (m) to do stereo bundle adjustment (if 0, mono bundle adjustment is done). For stereo data, the baseline in the calibration is used directly.")rtabmap::Parametersprivate
RTABMAP_PARAM(GTSAM, Optimizer, int, 1,"0=Levenberg 1=GaussNewton 2=Dogleg")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, Strategy, int, 0,"0=Frame-to-Map (F2M) 1=Frame-to-Frame (F2F) 2=Fovis 3=viso2 4=DVO-SLAM 5=ORB_SLAM2 6=OKVIS 7=LOAM 8=MSCKF_VIO")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ResetCountdown, int, 0,"Automatically reset odometry after X consecutive images on which odometry cannot be computed (value=0 disables auto-reset).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, Holonomic, bool, true,"If the robot is holonomic (strafing commands can be issued). If not, y value will be estimated from x and yaw values (y=x*tan(yaw)).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, FillInfoData, bool, true,"Fill info with data (inliers/outliers features).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ImageBufferSize, unsigned int, 1,"Data buffer size (0 min inf).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, FilteringStrategy, int, 0,"0=No filtering 1=Kalman filtering 2=Particle filtering")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ParticleSize, unsigned int, 400,"Number of particles of the filter.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ParticleNoiseT, float, 0.002,"Noise (m) of translation components (x,y,z).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ParticleLambdaT, float, 100,"Lambda of translation components (x,y,z).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ParticleNoiseR, float, 0.002,"Noise (rad) of rotational components (roll,pitch,yaw).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ParticleLambdaR, float, 100,"Lambda of rotational components (roll,pitch,yaw).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, KalmanProcessNoise, float, 0.001,"Process noise covariance value.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, KalmanMeasurementNoise, float, 0.01,"Process measurement covariance value.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, GuessMotion, bool, true,"Guess next transformation from the last motion computed.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, KeyFrameThr, float, 0.3,"[Visual] Create a new keyframe when the number of inliers drops under this ratio of features in last frame. Setting the value to 0 means that a keyframe is created for each processed frame.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, VisKeyFrameThr, int, 150,"[Visual] Create a new keyframe when the number of inliers drops under this threshold. Setting the value to 0 means that a keyframe is created for each processed frame.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ScanKeyFrameThr, float, 0.9,"[Geometry] Create a new keyframe when the number of ICP inliers drops under this ratio of points in last frame's scan. Setting the value to 0 means that a keyframe is created for each processed frame.")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, ImageDecimation, int, 1,"Decimation of the images before registration. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).")rtabmap::Parametersprivate
RTABMAP_PARAM(Odom, AlignWithGround, bool, false,"Align odometry with the ground on initialization.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, MaxSize, int, 2000,"[Visual] Local map size: If > 0 (example 5000), the odometry will maintain a local map of X maximum words.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, MaxNewFeatures, int, 0,"[Visual] Maximum features (sorted by keypoint response) added to local map from a new key-frame. 0 means no limit.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, ScanMaxSize, int, 2000,"[Geometry] Maximum local scan map size.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, ScanSubtractRadius, float, 0.05,"[Geometry] Radius used to filter points of a new added scan to local map. This could match the voxel size of the scans.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, ScanSubtractAngle, float, 45, uFormat("[Geometry] Max angle (degrees) used to filter points of a new added scan to local map (when \"%s\">0). 0 means any angle.", kOdomF2MScanSubtractRadius().c_str()).c_str())rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, BundleAdjustment, int, 0,"Local bundle adjustment: 0=disabled, 1=g2o, 2=cvsba.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomF2M, BundleAdjustmentMaxFrames, int, 10,"Maximum frames used for bundle adjustment (0=inf or all current frames in the local map).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMono, InitMinFlow, float, 100,"Minimum optical flow required for the initialization step.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMono, InitMinTranslation, float, 0.1,"Minimum translation required for the initialization step.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMono, MinTranslation, float, 0.02,"Minimum translation to add new points to local map. On initialization, translation x 5 is used as the minimum.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMono, MaxVariance, float, 0.01,"Maximum variance to add new points to local map.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, FeatureWindowSize, int, 9,"The size of the n x n image patch surrounding each feature, used for keypoint matching.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, MaxPyramidLevel, int, 3,"The maximum Gaussian pyramid level to process the image at. Pyramid level 1 corresponds to the original image.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, MinPyramidLevel, int, 0,"The minimum pyramid level.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, TargetPixelsPerFeature, int, 250,"Specifies the desired feature density as a ratio of input image pixels per feature detected. This number is used to control the adaptive feature thresholding.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, FastThreshold, int, 20,"FAST threshold.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UseAdaptiveThreshold, bool, true,"Use FAST adaptive threshold.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, FastThresholdAdaptiveGain, double, 0.005,"FAST threshold adaptive gain.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UseHomographyInitialization, bool, true,"Use homography initialization.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UseBucketing, bool, true,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, BucketWidth, int, 80,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, BucketHeight, int, 80,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, MaxKeypointsPerBucket, int, 25,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UseImageNormalization, bool, false,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, InlierMaxReprojectionError, double, 1.5,"The maximum image-space reprojection error (in pixels) a feature match is allowed to have and still be considered an inlier in the set of features used for motion estimation.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, CliqueInlierThreshold, double, 0.1,"See Howard's greedy max-clique algorithm for determining the maximum set of mutually consisten feature matches. This specifies the compatibility threshold, in meters.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, MinFeaturesForEstimate, int, 20,"Minimum number of features in the inlier set for the motion estimate to be considered valid.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, MaxMeanReprojectionError, double, 10.0,"Maximum mean reprojection error over the inlier feature matches for the motion estimate to be considered valid.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UseSubpixelRefinement, bool, true,"Specifies whether or not to refine feature matches to subpixel resolution.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, FeatureSearchWindow, int, 25,"Specifies the size of the search window to apply when searching for feature matches across time frames. The search is conducted around the feature location predicted by the initial rotation estimate.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, UpdateTargetFeaturesWithRefined, bool, false,"When subpixel refinement is enabled, the refined feature locations can be saved over the original feature locations. This has a slightly negative impact on frame-to-frame visual odometry, but is likely better when using this library as part of a visual SLAM algorithm.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, StereoRequireMutualMatch, bool, true,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, StereoMaxDistEpipolarLine, double, 1.5,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, StereoMaxRefinementDisplacement, double, 1.0,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomFovis, StereoMaxDisparity, int, 128,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, RansacIters, int, 200,"Number of RANSAC iterations.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, InlierThreshold, double, 2.0,"Fundamental matrix inlier threshold.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, Reweighting, bool, true,"Lower border weights (more robust to calibration errors).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchNmsN, int, 3,"Non-max-suppression: min. distance between maxima (in pixels).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchNmsTau, int, 50,"Non-max-suppression: interest point peakiness threshold.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchBinsize, int, 50,"Matching bin width/height (affects efficiency only).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchRadius, int, 200,"Matching radius (du/dv in pixels).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchDispTolerance, int, 2,"Disparity tolerance for stereo matches (in pixels).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchOutlierDispTolerance, int, 5,"Outlier removal: disparity tolerance (in pixels).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchOutlierFlowTolerance, int, 5,"Outlier removal: flow tolerance (in pixels).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchMultiStage, bool, true,"Multistage matching (denser and faster).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchHalfResolution, bool, true,"Match at half resolution, refine at full resolution.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, MatchRefinement, int, 1,"Refinement (0=none,1=pixel,2=subpixel).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, BucketMaxFeatures, int, 2,"Maximal number of features per bucket.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, BucketWidth, double, 50,"Width of bucket.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomViso2, BucketHeight, double, 50,"Height of bucket.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomORBSLAM2, Bf, double, 0.076,"Fake IR projector baseline (m) used only when stereo is not used.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomORBSLAM2, ThDepth, double, 40.0,"Close/Far threshold. Baseline times.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomORBSLAM2, Fps, float, 0.0,"Camera FPS.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomORBSLAM2, MaxFeatures, int, 1000,"Maximum ORB features extracted per frame.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomORBSLAM2, MapSize, int, 3000,"Maximum size of the feature map (0 means infinite).")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomLOAM, Sensor, int, 2,"Velodyne sensor: 0=VLP-16, 1=HDL-32, 2=HDL-64E")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomLOAM, ScanPeriod, float, 0.1,"Scan period (s)")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomLOAM, LinVar, float, 0.01,"Linear output variance.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomLOAM, AngVar, float, 0.01,"Angular output variance.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomLOAM, LocalMapping, bool, true,"Local mapping. It adds more time to compute odometry, but accuracy is significantly improved.")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, GridRow, int, 4,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, GridCol, int, 5,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, GridMinFeatureNum, int, 3,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, GridMaxFeatureNum, int, 4,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, PyramidLevels, int, 3,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, PatchSize, int, 15,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, FastThreshold, int, 10,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, MaxIteration, int, 30,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, TrackPrecision, double, 0.01,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, RansacThreshold, double, 3,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, StereoThreshold, double, 5,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, PositionStdThreshold, double, 8.0,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, RotationThreshold, double, 0.2618,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, TranslationThreshold, double, 0.4,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, TrackingRateThreshold, double, 0.5,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, OptTranslationThreshold, double, 0,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, NoiseGyro, double, 0.005,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, NoiseAcc, double, 0.05,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, NoiseGyroBias, double, 0.001,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, NoiseAccBias, double, 0.01,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, NoiseFeature, double, 0.035,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, InitCovVel, double, 0.25,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, InitCovGyroBias, double, 0.01,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, InitCovAccBias, double, 0.01,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, InitCovExRot, double, 0.00030462,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, InitCovExTrans, double, 0.000025,"")rtabmap::Parametersprivate
RTABMAP_PARAM(OdomMSCKF, MaxCamStateSize, int, 20,"")rtabmap::Parametersprivate
RTABMAP_PARAM(Reg, RepeatOnce, bool, true,"Do a second registration with the output of the first registration as guess. Only done if no guess was provided for the first registration (like on loop closure). It can be useful if the registration approach used can use a guess to get better matches.")rtabmap::Parametersprivate
RTABMAP_PARAM(Reg, Strategy, int, 0,"0=Vis, 1=Icp, 2=VisIcp")rtabmap::Parametersprivate
RTABMAP_PARAM(Reg, Force3DoF, bool, false,"Force 3 degrees-of-freedom transform (3Dof: x,y and yaw). Parameters z, roll and pitch will be set to 0.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, EstimationType, int, 1,"Motion estimation approach: 0:3D->3D, 1:3D->2D (PnP), 2:2D->2D (Epipolar Geometry)")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, ForwardEstOnly, bool, true,"Forward estimation only (A->B). If false, a transformation is also computed in backward direction (B->A), then the two resulting transforms are merged (middle interpolation between the transforms).")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, InlierDistance, float, 0.1, uFormat("[%s = 0] Maximum distance for feature correspondences. Used by 3D->3D estimation approach.", kVisEstimationType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, RefineIterations, int, 5, uFormat("[%s = 0] Number of iterations used to refine the transformation found by RANSAC. 0 means that the transformation is not refined.", kVisEstimationType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, PnPReprojError, float, 2, uFormat("[%s = 1] PnP reprojection error.", kVisEstimationType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, PnPFlags, int, 0, uFormat("[%s = 1] PnP flags: 0=Iterative, 1=EPNP, 2=P3P", kVisEstimationType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, PnPRefineIterations, int, 1, uFormat("[%s = 1] Refine iterations. Set to 0 if \"%s\" is also used.", kVisEstimationType().c_str(), kVisBundleAdjustment().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, EpipolarGeometryVar, float, 0.02, uFormat("[%s = 2] Epipolar geometry maximum variance to accept the transformation.", kVisEstimationType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, MinInliers, int, 20,"Minimum feature correspondences to compute/accept the transformation.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, Iterations, int, 300,"Maximum iterations to compute the transform.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, FeatureType, int, 6,"0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, MaxFeatures, int, 1000,"0 no limits.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, MaxDepth, float, 0,"Max depth of the features (0 means no limit).")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, MinDepth, float, 0,"Min depth of the features (0 means no limit).")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, DepthAsMask, bool, true,"Use depth image as mask when extracting features.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, SubPixWinSize, int, 3,"See cv::cornerSubPix().")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, SubPixIterations, int, 0,"See cv::cornerSubPix(). 0 disables sub pixel refining.")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, SubPixEps, float, 0.02,"See cv::cornerSubPix().")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorType, int, 0,"Correspondences computation approach: 0=Features Matching, 1=Optical Flow")rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorNNType, int, 1, uFormat("[%s=0] kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4. Used for features matching approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorNNDR, float, 0.6, uFormat("[%s=0] NNDR: nearest neighbor distance ratio. Used for features matching approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorGuessWinSize, int, 20, uFormat("[%s=0] Matching window size (pixels) around projected points when a guess transform is provided to find correspondences. 0 means disabled.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorGuessMatchToProjection, bool, false, uFormat("[%s=0] Match frame's corners to source's projected points (when guess transform is provided) instead of projected points to frame's corners.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorFlowWinSize, int, 16, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorFlowIterations, int, 30, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorFlowEps, float, 0.01, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, CorFlowMaxLevel, int, 3, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Vis, BundleAdjustment, int, 0,"Optimization with bundle adjustment: 0=disabled, 1=g2o, 2=cvsba.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, MaxTranslation, float, 0.2,"Maximum ICP translation correction accepted (m).")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, MaxRotation, float, 0.78,"Maximum ICP rotation correction accepted (rad).")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, VoxelSize, float, 0.0,"Uniform sampling voxel size (0=disabled).")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, DownsamplingStep, int, 1,"Downsampling step size (1=no sampling). This is done before uniform sampling.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, MaxCorrespondenceDistance, float, 0.05,"Max distance for point correspondences.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, Iterations, int, 30,"Max iterations.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, Epsilon, float, 0,"Set the transformation epsilon (maximum allowable difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, CorrespondenceRatio, float, 0.1,"Ratio of matching correspondences to accept the transform.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PointToPlane, bool, false,"Use point to plane ICP.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PointToPlaneK, int, 5,"Number of neighbors to compute normals for point to plane if the cloud doesn't have already normals.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PointToPlaneRadius, float, 1.0,"Search radius to compute normals for point to plane if the cloud doesn't have already normals.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PointToPlaneMinComplexity, float, 0.02,"Minimum structural complexity (0.0=low, 1.0=high) of the scan to do point to plane registration, otherwise point to point registration is done instead.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PM, bool, false,"Use libpointmatcher for ICP registration instead of PCL's implementation.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PMMatcherKnn, int, 1,"KDTreeMatcher/knn: number of nearest neighbors to consider it the reference. For convenience when configuration file is not set.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PMMatcherEpsilon, float, 0.0,"KDTreeMatcher/epsilon: approximation to use for the nearest-neighbor search. For convenience when configuration file is not set.")rtabmap::Parametersprivate
RTABMAP_PARAM(Icp, PMOutlierRatio, float, 0.95,"TrimmedDistOutlierFilter/ratio: For convenience when configuration file is not set. For kinect-like point cloud, use 0.65.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, WinWidth, int, 15,"Window width.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, WinHeight, int, 3,"Window height.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, Iterations, int, 30,"Maximum iterations.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, MaxLevel, int, 5,"Maximum pyramid level.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, MinDisparity, float, 0.5,"Minimum disparity.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, MaxDisparity, float, 128.0,"Maximum disparity.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, OpticalFlow, bool, true,"Use optical flow to find stereo correspondences, otherwise a simple block matching approach is used.")rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, SSD, bool, true, uFormat("[%s=false] Use Sum of Squared Differences (SSD) window, otherwise Sum of Absolute Differences (SAD) window is used.", kStereoOpticalFlow().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Stereo, Eps, double, 0.01, uFormat("[%s=true] Epsilon stop criterion.", kStereoOpticalFlow().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, BlockSize, int, 15,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, MinDisparity, int, 0,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, NumDisparities, int, 128,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, PreFilterSize, int, 9,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, PreFilterCap, int, 31,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, UniquenessRatio, int, 15,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, TextureThreshold, int, 10,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, SpeckleWindowSize, int, 100,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(StereoBM, SpeckleRange, int, 4,"See cv::StereoBM")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, FromDepth, bool, true,"Create occupancy grid from depth image(s), otherwise it is created from laser scan.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, DepthDecimation, int, 4, uFormat("[%s=true] Decimation of the depth image before creating cloud. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).", kGridDepthDecimation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, RangeMin, float, 0.0,"Minimum range from sensor.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, RangeMax, float, 5.0,"Maximum range from sensor. 0=inf.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, FootprintLength, float, 0.0,"Footprint length used to filter points over the footprint of the robot.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, FootprintWidth, float, 0.0,"Footprint width used to filter points over the footprint of the robot. Footprint length should be set.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, FootprintHeight, float, 0.0,"Footprint height used to filter points over the footprint of the robot. Footprint length and width should be set.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, ScanDecimation, int, 1, uFormat("[%s=false] Decimation of the laser scan before creating cloud.", kGridFromDepth().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, CellSize, float, 0.05,"Resolution of the occupancy grid.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, PreVoxelFiltering, bool, true, uFormat("Input cloud is downsampled by voxel filter (voxel size is \"%s\") before doing segmentation of obstacles and ground.", kGridCellSize().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MapFrameProjection, bool, false,"Projection in map frame. On a 3D terrain and a fixed local camera transform (the cloud is created relative to ground), you may want to disable this to do the projection in robot frame instead.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, NormalsSegmentation, bool, true,"Segment ground from obstacles using point normals, otherwise a fast passthrough is used.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MaxObstacleHeight, float, 0.0,"Maximum obstacles height (0=disabled).")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MinGroundHeight, float, 0.0,"Minimum ground height (0=disabled).")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MaxGroundHeight, float, 0.0, uFormat("Maximum ground height (0=disabled). Should be set if \"%s\" is false.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MaxGroundAngle, float, 45, uFormat("[%s=true] Maximum angle (degrees) between point's normal to ground's normal to label it as ground. Points with higher angle difference are considered as obstacles.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, NormalK, int, 20, uFormat("[%s=true] K neighbors to compute normals.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, ClusterRadius, float, 0.1, uFormat("[%s=true] Cluster maximum radius.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, MinClusterSize, int, 10, uFormat("[%s=true] Minimum cluster size to project the points.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, FlatObstacleDetected, bool, true, uFormat("[%s=true] Flat obstacles detected.", kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, 3D, bool, false, uFormat("A 3D occupancy grid is required if you want an OctoMap (3D ray tracing). Set to false if you want only a 2D map, the cloud will be projected on xy plane. A 2D map can be still generated if checked, but it requires more memory and time to generate it. Ignored if laser scan is 2D and \"%s\" is false.", kGridFromDepth().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, GroundIsObstacle, bool, false, uFormat("[%s=true] Ground segmentation (%s) is ignored, all points are obstacles. Use this only if you want an OctoMap with ground identified as an obstacle (e.g., with an UAV).", kGrid3D().c_str(), kGridNormalsSegmentation().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, NoiseFilteringRadius, float, 0.0,"Noise filtering radius (0=disabled). Done after segmentation.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, NoiseFilteringMinNeighbors, int, 5,"Noise filtering minimum neighbors.")rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, Scan2dUnknownSpaceFilled, bool, false, uFormat("Unknown space filled. Only used with 2D laser scans. Use %s to set maximum range if laser scan max range is to set.", kGridRangeMax().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(Grid, RayTracing, bool, false, uFormat("Ray tracing is done for each occupied cell, filling unknown space between the sensor and occupied cells. If %s=true, RTAB-Map should be built with OctoMap support, otherwise 3D ray tracing is ignored.", kGrid3D().c_str()))rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, FullUpdate, bool, true,"When the graph is changed, the whole map will be reconstructed instead of moving individually each cells of the map. Also, data added to cache won't be released after updating the map. This process is longer but more robust to drift that would erase some parts of the map when it should not.")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, UpdateError, float, 0.01,"Graph changed detection error (m). Update map only if poses in new optimized graph have moved more than this value.")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, FootprintRadius, float, 0.0,"Footprint radius (m) used to clear all obstacles under the graph.")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, MinSize, float, 0.0,"Minimum map size (m).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, Eroded, bool, false,"Erode obstacle cells.")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, MaxNodes, int, 0,"Maximum nodes assembled in the map starting from the last node (0=unlimited).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, OccupancyThr, float, 0.5,"Occupancy threshold (value between 0 and 1).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, ProbHit, float, 0.7,"Probability of a hit (value between 0.5 and 1).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, ProbMiss, float, 0.4,"Probability of a miss (value between 0 and 0.5).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, ProbClampingMin, float, 0.1192,"Probability clamping minimum (value between 0 and 1).")rtabmap::Parametersprivate
RTABMAP_PARAM(GridGlobal, ProbClampingMax, float, 0.971,"Probability clamping maximum (value between 0 and 1).")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Rtabmap, WorkingDirectory,"","Working directory.")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Kp, RoiRatios,"0.0 0.0 0.0 0.0","Region of interest ratios [left, right, top, bottom].")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Kp, DictionaryPath,"","Path of the pre-computed dictionary")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Bayes, PredictionLC,"0.1 0.36 0.30 0.16 0.062 0.0151 0.00255 0.000324 2.5e-05 1.3e-06 4.8e-08 1.2e-09 1.9e-11 2.2e-13 1.7e-15 8.5e-18 2.9e-20 6.9e-23","Prediction of loop closures (Gaussian-like, here with sigma=1.6) - Format: {VirtualPlaceProb, LoopClosureProb, NeighborLvl1, NeighborLvl2, ...}.")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(OdomORBSLAM2, VocPath,"","Path to ORB vocabulary (*.txt).")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(OdomOKVIS, ConfigPath,"","Path of OKVIS config file.")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Vis, RoiRatios,"0.0 0.0 0.0 0.0","Region of interest ratios [left, right, top, bottom].")rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Icp, PMConfig,"", uFormat("Configuration file (*.yaml) used by libpointmatcher. Note that data filters set for libpointmatcher are done after filtering done by rtabmap (i.e., %s, %s), so make sure to disable those in rtabmap if you want to use only those from libpointmatcher. Parameters %s, %s and %s are also ignored if configuration file is set.", kIcpVoxelSize().c_str(), kIcpDownsamplingStep().c_str(), kIcpIterations().c_str(), kIcpEpsilon().c_str(), kIcpMaxCorrespondenceDistance().c_str()).c_str())rtabmap::Parametersprivate
RTABMAP_PARAM_STR(Grid, DepthRoiRatios,"0.0 0.0 0.0 0.0", uFormat("[%s=true] Region of interest ratios [left, right, top, bottom].", kGridFromDepth().c_str()))rtabmap::Parametersprivate
serialize(const ParametersMap &parameters)rtabmap::Parametersstatic
showUsage()rtabmap::Parametersstatic
writeINI(const std::string &configFile, const ParametersMap &parameters)rtabmap::Parametersstatic
~Parameters()rtabmap::Parametersvirtual


rtabmap
Author(s): Mathieu Labbe
autogenerated on Wed Jun 5 2019 22:43:43