Go to the documentation of this file.
58 return "Subsampling, Normals. This filter decomposes the point-cloud space in boxes, by recursively splitting the cloud through axis-aligned hyperplanes such as to maximize the evenness of the aspect ratio of the box. When the number of points in a box reaches a value knn or lower, the filter computes the center of mass of these points and its normal by taking the eigenvector corresponding to the smallest eigenvalue of all points in the box.";
63 {
"ratio",
"ratio of points to keep with random subsampling. Matrix (normal, density, etc.) will be associated to all points in the same bin.",
"0.5",
"0.0000001",
"1.0", &P::Comp<T>},
64 {
"knn",
"determined how many points are used to compute the normals. Direct link with the rapidity of the computation (large = fast). Technically, limit over which a box is splitted in two",
"7",
"3",
"2147483647", &P::Comp<unsigned>},
65 {
"samplingMethod",
"if set to 0, random subsampling using the parameter ratio. If set to 1, bin subsampling with the resulting number of points being 1/knn.",
"0",
"0",
"1", &P::Comp<unsigned>},
66 {
"maxBoxDim",
"maximum length of a box above which the box is discarded",
"inf"},
67 {
"averageExistingDescriptors",
"whether the filter keep the existing point descriptors and average them or should it drop them",
"1"},
68 {
"keepNormals",
"whether the normals should be added as descriptors to the resulting cloud",
"1"},
69 {
"keepDensities",
"whether the point densities should be added as descriptors to the resulting cloud",
"0"},
70 {
"keepEigenValues",
"whether the eigen values should be added as descriptors to the resulting cloud",
"0"},
71 {
"keepEigenVectors",
"whether the eigen vectors should be added as descriptors to the resulting cloud",
"0"}
113 const int pointsCount(
features.cols());
115 for (
int i = 0; i < pointsCount; ++i)
133 void buildNew(BuildData& data,
const int first,
const int last,
Vector&& minValues,
Vector&& maxValues)
const;
134 void fuseRange(BuildData& data,
const int first,
const int last)
const;
Parametrizable::Parameters Parameters
boost::optional< View > eigenValues
PointMatcherSupport::Parametrizable Parametrizable
PointMatcher< T >::DataPoints::InvalidField InvalidField
void buildNew(BuildData &data, const int first, const int last, Vector &&minValues, Vector &&maxValues) const
const BuildData & buildData
Parametrizable::ParameterDoc ParameterDoc
PointMatcher< T >::Matrix Matrix
Parametrizable::ParametersDoc ParametersDoc
boost::optional< View > densities
Functions and classes that are dependant on scalar type are defined in this templatized class.
const bool keepEigenValues
std::vector< int > Indices
static const ParametersDoc availableParameters()
Parametrizable::InvalidParameter InvalidParameter
bool operator()(const int &p0, const int &p1)
void fuseRange(BuildData &data, const int first, const int last) const
An exception thrown when one tries to access features or descriptors unexisting or of wrong dimension...
PointMatcherSupport::Parametrizable P
boost::optional< View > normals
PointMatcher< T >::DataPoints DataPoints
CompareDim(const int dim, const BuildData &buildData)
std::vector< ParameterDoc > ParametersDoc
The documentation of all parameters.
const unsigned samplingMethod
DataPointsFilter()
Construct without parameter.
Sampling surface normals. First decimate the space until there is at most knn points,...
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
A dense matrix over ScalarType.
SamplingSurfaceNormalDataPointsFilter(const Parameters ¶ms=Parameters())
BuildData(Matrix &features, Matrix &descriptors)
virtual ~SamplingSurfaceNormalDataPointsFilter()
An exception thrown when one tries to fetch the value of an unexisting parameter.
virtual DataPoints filter(const DataPoints &input)
Eigen::Matrix< T, Eigen::Dynamic, 1 > Vector
A vector over ScalarType.
boost::optional< View > eigenVectors
const bool averageExistingDescriptors
static const std::string description()
The superclass of classes that are constructed using generic parameters. This class provides the para...
PointMatcher< T >::Vector Vector
The documentation of a parameter.
Eigen::Block< Matrix > View
A view on a feature or descriptor.
const bool keepEigenVectors
virtual void inPlaceFilter(DataPoints &cloud)
std::map< std::string, Parameter > Parameters
Parameters stored as a map of string->string.
mp2p_icp
Author(s):
autogenerated on Wed Oct 23 2024 02:45:41