|  | 
| static SOPHUS_FUNC Sophus::Matrix< Scalar, num_parameters, DoF > | Dx_exp_x (Tangent const &upsilon_omega) | 
|  | 
| static SOPHUS_FUNC Sophus::Matrix< Scalar, num_parameters, DoF > | Dx_exp_x_at_0 () | 
|  | 
| static SOPHUS_FUNC Transformation | Dxi_exp_x_matrix_at_0 (int i) | 
|  | 
| static SOPHUS_FUNC SE3< Scalar > | exp (Tangent const &a) | 
|  | 
| template<class S  = Scalar> | 
| static SOPHUS_FUNC enable_if_t< std::is_floating_point< S >::value, SE3 > | fitToSE3 (Matrix4< Scalar > const &T) | 
|  | 
| static SOPHUS_FUNC Transformation | generator (int i) | 
|  | 
| static SOPHUS_FUNC Transformation | hat (Tangent const &a) | 
|  | 
| static SOPHUS_FUNC Tangent | lieBracket (Tangent const &a, Tangent const &b) | 
|  | 
| static SOPHUS_FUNC SE3 | rotX (Scalar const &x) | 
|  | 
| static SOPHUS_FUNC SE3 | rotY (Scalar const &y) | 
|  | 
| static SOPHUS_FUNC SE3 | rotZ (Scalar const &z) | 
|  | 
| template<class UniformRandomBitGenerator > | 
| static SE3 | sampleUniform (UniformRandomBitGenerator &generator) | 
|  | 
| template<class T0 , class T1 , class T2 > | 
| static SOPHUS_FUNC SE3 | trans (T0 const &x, T1 const &y, T2 const &z) | 
|  | 
| static SOPHUS_FUNC SE3 | trans (Vector3< Scalar > const &xyz) | 
|  | 
| static SOPHUS_FUNC SE3 | transX (Scalar const &x) | 
|  | 
| static SOPHUS_FUNC SE3 | transY (Scalar const &y) | 
|  | 
| static SOPHUS_FUNC SE3 | transZ (Scalar const &z) | 
|  | 
| static SOPHUS_FUNC Tangent | vee (Transformation const &Omega) | 
|  | 
template<class Scalar_, int Options>
class Sophus::SE3< Scalar_, Options >
SE3 using default storage; derived from SE3Base. 
Definition at line 11 of file se3.hpp.
template<class Scalar_ , int Options> 
 
Constructor from 4x4 matrix
Precondition: Rotation matrix needs to be orthogonal with determinant of 1. The last row must be (0, 0, 0, 1). 
Definition at line 499 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
 
Group exponential
This functions takes in an element of tangent space (= twist a) and returns the corresponding element of the group SE(3).
The first three components of a represent the translational part upsilon in the tangent space of SE(3), while the last three components of a represents the rotation vector omega. To be more specific, this function computes expmat(hat(a)) with expmat(.) being the matrix exponential and hat(.) the hat-operator of SE(3), see below. 
Note: That is an accurate expansion!
Definition at line 763 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
 
Returns the ith infinitesimal generators of SE(3).
The infinitesimal generators of SE(3) are:
      |  0  0  0  1 |
G_0 = |  0  0  0  0 |
      |  0  0  0  0 |
      |  0  0  0  0 |
 
      |  0  0  0  0 |
G_1 = |  0  0  0  1 |
      |  0  0  0  0 |
      |  0  0  0  0 |
 
      |  0  0  0  0 |
G_2 = |  0  0  0  0 |
      |  0  0  0  1 |
      |  0  0  0  0 |
 
      |  0  0  0  0 |
G_3 = |  0  0 -1  0 |
      |  0  1  0  0 |
      |  0  0  0  0 |
 
      |  0  0  1  0 |
G_4 = |  0  0  0  0 |
      | -1  0  0  0 |
      |  0  0  0  0 |
 
      |  0 -1  0  0 |
G_5 = |  1  0  0  0 |
      |  0  0  0  0 |
      |  0  0  0  0 |
Precondition: i must be in [0, 5]. 
Definition at line 833 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
 
hat-operator
It takes in the 6-vector representation (= twist) and returns the corresponding matrix representation of Lie algebra element.
Formally, the hat()-operator of SE(3) is defined as
hat(.): R^6 -> R^{4x4}, hat(a) = sum_i a_i * G_i (for i=0,...,5)
with G_i being the ith infinitesimal generator of SE(3).
The corresponding inverse is the vee()-operator, see below. 
Definition at line 854 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
 
Lie bracket
It computes the Lie bracket of SE(3). To be more specific, it computes
[omega_1, omega_2]_se3 := vee([hat(omega_1), hat(omega_2)])
with [A,B] := AB-BA being the matrix commutator, hat(.) the hat()-operator and vee(.) the vee()-operator of SE(3). 
Definition at line 872 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
template<class UniformRandomBitGenerator > 
  
  | 
        
          | static SE3 Sophus::SE3< Scalar_, Options >::sampleUniform | ( | UniformRandomBitGenerator & | generator | ) |  |  | inlinestatic | 
 
Draw uniform sample from SE(3) manifold.
Translations are drawn component-wise from the range [-1, 1]. 
Definition at line 908 of file se3.hpp.
 
 
template<class Scalar_ , int Options> 
 
vee-operator
It takes 4x4-matrix representation Omega and maps it to the corresponding 6-vector representation of Lie algebra.
This is the inverse of the hat()-operator, see above.
Precondition: Omega must have the following structure: 
           |  0 -f  e  a |
           |  f  0 -d  b |
           | -e  d  0  c
           |  0  0  0  0 | .
 
Definition at line 958 of file se3.hpp.