12 #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA 
   14 #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; 
   17 #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++; 
   18 #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10; 
   19 #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20; 
   24 template<
typename SparseMatrixType> 
void sparse_basic(
const SparseMatrixType& 
ref)
 
   26   typedef typename SparseMatrixType::StorageIndex StorageIndex;
 
   36   enum { Flags = SparseMatrixType::Flags };
 
   43   Scalar s1 = internal::random<Scalar>();
 
   49     std::vector<Vector2> zeroCoords;
 
   50     std::vector<Vector2> nonzeroCoords;
 
   51     initSparse<Scalar>(
density, refMat, 
m, 0, &zeroCoords, &nonzeroCoords);
 
   62     if(!nonzeroCoords.empty()) {
 
   63       m.coeffRef(nonzeroCoords[0].
x(), nonzeroCoords[0].
y()) = 
Scalar(5);
 
   64       refMat.coeffRef(nonzeroCoords[0].
x(), nonzeroCoords[0].
y()) = 
Scalar(5);
 
   79       bool call_reserve = internal::random<int>()%2;
 
   80       Index nnz = internal::random<int>(1,
int(
rows)/2);
 
   83         if(internal::random<int>()%2)
 
   84           m2.reserve(VectorXi::Constant(
m2.outerSize(), 
int(nnz)));
 
   86           m2.reserve(
m2.outerSize() * nnz);
 
   95             m2.insert(
i,
j) = 
m1(
i,
j) = internal::random<Scalar>();
 
   99       if(call_reserve && !SparseMatrixType::IsRowMajor)
 
  113       if(internal::random<int>()%2)
 
  114         m2.reserve(VectorXi::Constant(
m2.outerSize(), 2));
 
  119         if ((
m1.coeff(
i,
j)==
Scalar(0)) && (internal::random<int>()%2))
 
  120           m2.insert(
i,
j) = 
m1(
i,
j) = internal::random<Scalar>();
 
  123           Scalar v = internal::random<Scalar>();
 
  124           m2.coeffRef(
i,
j) += 
v;
 
  137       VectorXi r(VectorXi::Constant(
m2.outerSize(), ((
mode%2)==0) ? 
int(
m2.innerSize()) : std::max<int>(1,
int(
m2.innerSize())/8)));
 
  144           m2.insert(
i,
j) = 
m1(
i,
j) = internal::random<Scalar>();
 
  148       if(internal::random<int>()%2)
 
  166     initSparse<Scalar>(
density, refM4, m4);
 
  168     if(internal::random<bool>())
 
  181     if(SparseMatrixType::IsRowMajor)
 
  182       VERIFY_IS_APPROX(
m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
 
  184       VERIFY_IS_APPROX(
m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
 
  188     Index r = internal::random<Index>(0,
m1.rows()-2);
 
  189     Index c = internal::random<Index>(0,
m1.cols()-1);
 
  190     VERIFY_IS_APPROX(( 
m1.template block<1,Dynamic>(r,0,1,
m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
 
  260     m1 = m4; refM1 = refM4;
 
  265     m1 = m4; refM1 = refM4;
 
  268     m1 = m4; refM1 = refM4;
 
  271     m1 = m4; refM1 = refM4;
 
  274     m1 = m4; refM1 = refM4;
 
  276     if(
m1.isCompressed())
 
  281         for(
typename SparseMatrixType::InnerIterator it(
m1,
j); it; ++it)
 
  282           refM1(it.row(), it.col()) += s1;
 
  289       SpBool mb1 = 
m1.real().template cast<bool>();
 
  290       SpBool mb2 = 
m2.real().template cast<bool>();
 
  291       VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
 
  292       VERIFY_IS_EQUAL((mb1 && mb2).
template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
 
  293       VERIFY_IS_EQUAL((mb1 || mb2).
template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
 
  294       SpBool mb3 = mb1 && mb2;
 
  295       if(mb1.coeffs().all() && mb2.coeffs().all())
 
  297         VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
 
  306     initSparse<Scalar>(
density, refMat2, 
m2);
 
  307     std::vector<Scalar> ref_value(
m2.innerSize());
 
  308     std::vector<Index> ref_index(
m2.innerSize());
 
  309     if(internal::random<bool>())
 
  313       Index count_forward = 0;
 
  315       for(
typename SparseMatrixType::InnerIterator it(
m2,
j); it; ++it)
 
  317         ref_value[ref_value.size()-1-count_forward] = it.value();
 
  318         ref_index[ref_index.size()-1-count_forward] = it.index();
 
  321       Index count_reverse = 0;
 
  322       for(
typename SparseMatrixType::ReverseInnerIterator it(
m2,
j); it; --it)
 
  325         VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
 
  336     initSparse<Scalar>(
density, refMat2, 
m2);
 
  352     int countFalseNonZero = 0;
 
  353     int countTrueNonZero = 0;
 
  354     m2.reserve(VectorXi::Constant(
m2.outerSize(), 
int(
m2.innerSize())));
 
  359         float x = internal::random<float>(0,1);
 
  377     if(internal::random<bool>())
 
  379     VERIFY(countFalseNonZero+countTrueNonZero == 
m2.nonZeros());
 
  380     if(countTrueNonZero>0)
 
  383     VERIFY(countTrueNonZero==
m2.nonZeros());
 
  390     std::vector<TripletType> triplets;
 
  392     triplets.reserve(ntriplets);
 
  399       StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(
rows-1));
 
  400       StorageIndex 
c = internal::random<StorageIndex>(0,StorageIndex(
cols-1));
 
  401       Scalar v = internal::random<Scalar>();
 
  402       triplets.push_back(TripletType(r,
c,
v));
 
  403       refMat_sum(r,
c) += 
v;
 
  405         refMat_prod(r,
c) = 
v;
 
  407         refMat_prod(r,
c) *= 
v;
 
  408       refMat_last(r,
c) = 
v;
 
  411     m.setFromTriplets(triplets.begin(), triplets.end());
 
  414     m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
 
  416 #if (EIGEN_COMP_CXXVER >= 11) 
  417     m.setFromTriplets(triplets.begin(), triplets.end(), [] (
Scalar,
Scalar b) { return b; });
 
  426     initSparse<Scalar>(
density, refMat2, 
m2);
 
  427     initSparse<Scalar>(
density, refMat3, 
m3);
 
  443     m2.coeffRef(
i,
j) = 123;
 
  444     if(internal::random<bool>())
 
  449     mapMat2.coeffRef(
i,
j) = -123;
 
  457     initSparse<Scalar>(
density, refMat2, 
m2);
 
  462     refMat3 = refMat2.template triangularView<Upper>();
 
  463     m3 = 
m2.template triangularView<Upper>();
 
  467       refMat3 = refMat2.template triangularView<UnitUpper>();
 
  468       m3 = 
m2.template triangularView<UnitUpper>();
 
  471       refMat3 = refMat2.template triangularView<UnitLower>();
 
  472       m3 = 
m2.template triangularView<UnitLower>();
 
  476     refMat3 = refMat2.template triangularView<StrictlyUpper>();
 
  477     m3 = 
m2.template triangularView<StrictlyUpper>();
 
  480     refMat3 = refMat2.template triangularView<StrictlyLower>();
 
  481     m3 = 
m2.template triangularView<StrictlyLower>();
 
  485     refMat3 = 
m2.template triangularView<StrictlyUpper>();
 
  490   if(!SparseMatrixType::IsRowMajor)
 
  494     initSparse<Scalar>(
density, refMat2, 
m2);
 
  495     refMat3 = refMat2.template selfadjointView<Lower>();
 
  496     m3 = 
m2.template selfadjointView<Lower>();
 
  499     refMat3 += refMat2.template selfadjointView<Lower>();
 
  500     m3 += 
m2.template selfadjointView<Lower>();
 
  503     refMat3 -= refMat2.template selfadjointView<Lower>();
 
  504     m3 -= 
m2.template selfadjointView<Lower>();
 
  517     initSparse<Scalar>(
density, refMat2, 
m2);
 
  531     initSparse<Scalar>(
density, refMat2, 
m2);
 
  535     d = 
m2.diagonal().array();
 
  540     m2.diagonal()      += refMat2.diagonal();
 
  541     refMat2.diagonal() += refMat2.diagonal();
 
  552     SparseMatrixType 
m3(
d.asDiagonal());
 
  554     refMat2 += 
d.asDiagonal();
 
  555     m2 += 
d.asDiagonal();
 
  557     m2.setZero();       
m2 += 
d.asDiagonal();
 
  558     refMat2.setZero();  refMat2 += 
d.asDiagonal();
 
  560     m2.setZero();       
m2 -= 
d.asDiagonal();
 
  561     refMat2.setZero();  refMat2 -= 
d.asDiagonal();
 
  564     initSparse<Scalar>(
density, refMat2, 
m2);
 
  566     m2 += 
d.asDiagonal();
 
  567     refMat2 += 
d.asDiagonal();
 
  570     initSparse<Scalar>(
density, refMat2, 
m2);
 
  574       res(
i) = internal::random<int>(0,3);
 
  576     m2 -= 
d.asDiagonal();
 
  577     refMat2 -= 
d.asDiagonal();
 
  583       std::vector< std::pair<StorageIndex,StorageIndex> > inc;
 
  585         inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
 
  586       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
 
  587       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
 
  588       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
 
  589       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
 
  590       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
 
  591       inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
 
  592       inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
 
  594       for(
size_t i = 0; 
i< inc.size(); 
i++) {
 
  595         StorageIndex incRows = inc[
i].first;
 
  596         StorageIndex incCols = inc[
i].second;
 
  599         initSparse<Scalar>(
density, refMat1, 
m1);
 
  601         SparseMatrixType 
m2 = 
m1;
 
  604         m1.conservativeResize(
rows+incRows, 
cols+incCols);
 
  605         m2.conservativeResize(
rows+incRows, 
cols+incCols);
 
  606         refMat1.conservativeResize(
rows+incRows, 
cols+incCols);
 
  607         if (incRows > 0) refMat1.bottomRows(incRows).setZero();
 
  608         if (incCols > 0) refMat1.rightCols(incCols).setZero();
 
  615           m1.insert(
m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
 
  617           m1.insert(0, 
m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
 
  635       Scalar v = internal::random<Scalar>();
 
  636       m1.coeffRef(
i,
j) = 
v;
 
  637       refMat1.coeffRef(
i,
j) = 
v;
 
  639       if(internal::random<Index>(0,10)<2)
 
  643     refMat1.setIdentity();
 
  649     typedef typename SparseMatrixType::InnerIterator IteratorType;
 
  653     initSparse<Scalar>(
density, refMat2, 
m2);
 
  654     IteratorType static_array[2];
 
  655     static_array[0] = IteratorType(
m2,0);
 
  656     static_array[1] = IteratorType(
m2,
m2.outerSize()-1);
 
  657     VERIFY( static_array[0] || 
m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
 
  658     VERIFY( static_array[1] || 
m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
 
  659     if(static_array[0] && static_array[1])
 
  662       static_array[1] = IteratorType(
m2,0);
 
  663       VERIFY( static_array[1] );
 
  664       VERIFY( static_array[1].index() == static_array[0].index() );
 
  665       VERIFY( static_array[1].outer() == static_array[0].outer() );
 
  669     std::vector<IteratorType> iters(2);
 
  670     iters[0] = IteratorType(
m2,0);
 
  671     iters[1] = IteratorType(
m2,
m2.outerSize()-1);
 
  676     SparseMatrixType 
m1(0,
cols);
 
  677     m1.reserve(ArrayXi::Constant(
m1.outerSize(),1));
 
  678     SparseMatrixType 
m2(
rows,0);
 
  679     m2.reserve(ArrayXi::Constant(
m2.outerSize(),1));
 
  684 template<
typename SparseMatrixType>
 
  686   typedef typename SparseMatrixType::StorageIndex StorageIndex;
 
  689   std::vector<TripletType> triplets;
 
  693   triplets.reserve(ntriplets);
 
  697     Index r = internal::random<Index>(0,
rows-1);
 
  701     triplets.push_back(TripletType(r,
c,
v));
 
  705   m.setFromTriplets(triplets.begin(), triplets.end());
 
  706   VERIFY(
m.nonZeros() <= ntriplets);
 
  714   int n = Eigen::internal::random<int>(200,600);
 
  716   std::complex<double> val;
 
  718   for(
int i=0; 
i<
n; ++
i)
 
  720     mat.coeffRef(
i, 
i%(
n/10)) = val;
 
  725 #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA 
  731     int r = Eigen::internal::random<int>(1,200), 
c = Eigen::internal::random<int>(1,200);
 
  732     if(Eigen::internal::random<int>(0,4) == 0) {
 
  744     r = Eigen::internal::random<int>(1,100);
 
  745     c = Eigen::internal::random<int>(1,100);
 
  746     if(Eigen::internal::random<int>(0,4) == 0) {