|
| | ShonanAveraging3 (const BetweenFactorPose3s &factors, const Parameters ¶meters=Parameters()) |
| |
| | ShonanAveraging3 (const Measurements &measurements, const Parameters ¶meters=Parameters()) |
| |
| | ShonanAveraging3 (std::string g2oFile, const Parameters ¶meters=Parameters()) |
| |
| std::vector< BinaryMeasurement< T > > | maybeRobust (const std::vector< BinaryMeasurement< T >> &measurements, bool useRobustModel=false) const |
| |
| Values | projectFrom (size_t p, const Values &values) const |
| |
| Values | projectFrom (size_t p, const Values &values) const |
| |
| Values | roundSolutionS (const Matrix &S) const |
| |
| Values | roundSolutionS (const Matrix &S) const |
| |
| | ShonanAveraging (const Measurements &measurements, const Parameters ¶meters=Parameters()) |
| |
| size_t | nrUnknowns () const |
| | Return number of unknowns. More...
|
| |
| size_t | numberMeasurements () const |
| | Return number of measurements. More...
|
| |
| const BinaryMeasurement< Rot > & | measurement (size_t k) const |
| | k^th binary measurement More...
|
| |
| Measurements | makeNoiseModelRobust (const Measurements &measurements, double k=1.345) const |
| |
| const Rot & | measured (size_t k) const |
| | k^th measurement, as a Rot. More...
|
| |
| const KeyVector & | keys (size_t k) const |
| | Keys for k^th measurement, as a vector of Key values. More...
|
| |
| double | cost (const Values &values) const |
| |
| Values | initializeRandomly (std::mt19937 &rng) const |
| |
| Values | initializeRandomly () const |
| | Random initialization for wrapper, fixed random seed. More...
|
| |
| std::pair< Values, double > | run (const Values &initialEstimate, size_t pMin=d, size_t pMax=10) const |
| |
| Sparse | computeLambda (const Matrix &S) const |
| | Version that takes pxdN Stiefel manifold elements. More...
|
| |
| Matrix | computeLambda_ (const Values &values) const |
| | Dense versions of computeLambda for wrapper/testing. More...
|
| |
| Matrix | computeLambda_ (const Matrix &S) const |
| | Dense versions of computeLambda for wrapper/testing. More...
|
| |
| Sparse | computeA (const Values &values) const |
| | Compute A matrix whose Eigenvalues we will examine. More...
|
| |
| Sparse | computeA (const Matrix &S) const |
| | Version that takes pxdN Stiefel manifold elements. More...
|
| |
| Matrix | computeA_ (const Values &values) const |
| | Dense version of computeA for wrapper/testing. More...
|
| |
| double | computeMinEigenValue (const Values &values, Vector *minEigenVector=nullptr) const |
| |
| double | computeMinEigenValueAP (const Values &values, Vector *minEigenVector=nullptr) const |
| |
| Values | roundSolutionS (const Matrix &S) const |
| | Project pxdN Stiefel manifold matrix S to Rot3^N. More...
|
| |
| Matrix | riemannianGradient (size_t p, const Values &values) const |
| | Calculate the riemannian gradient of F(values) at values. More...
|
| |
| Values | initializeWithDescent (size_t p, const Values &values, const Vector &minEigenVector, double minEigenValue, double gradienTolerance=1e-2, double preconditionedGradNormTolerance=1e-4) const |
| |
| Sparse | computeLambda (const Values &values) const |
| |
| NonlinearFactorGraph | buildGraphAt (size_t p) const |
| |
| Values | initializeRandomlyAt (size_t p, std::mt19937 &rng) const |
| |
| Values | initializeRandomlyAt (size_t p) const |
| | Version of initializeRandomlyAt with fixed random seed. More...
|
| |
| double | costAt (size_t p, const Values &values) const |
| |
| std::pair< double, Vector > | computeMinEigenVector (const Values &values) const |
| |
| bool | checkOptimality (const Values &values) const |
| |
| std::shared_ptr< LevenbergMarquardtOptimizer > | createOptimizerAt (size_t p, const Values &initial) const |
| |
| Values | tryOptimizingAt (size_t p, const Values &initial) const |
| |
| Values | projectFrom (size_t p, const Values &values) const |
| |
| Values | roundSolution (const Values &values) const |
| |
Definition at line 438 of file ShonanAveraging.h.