Go to the documentation of this file.
   27 using namespace gtsam;
 
   29 int main(
int argc, 
char **argv) {
 
   30   const int nrNodes = 4;
 
   31   const size_t nrStates = 3;
 
   35   vector<DiscreteKey> 
keys;
 
   36   for (
int k = 0; 
k < nrNodes; 
k++) {
 
   38     keys.push_back(key_i);
 
   46   const string transition = 
"8/1/1 1/8/1 1/1/8";
 
   47   for (
int k = 1; 
k < nrNodes; 
k++) {
 
   70   chordal->print(
"Eliminated");
 
   73   cout << 
"\n10 samples:" << endl;
 
   74   for (
size_t k = 0; 
k < 10; 
k++) {
 
   75     auto sample = chordal->sample();
 
   80   cout << 
"\nComputing Node Marginals .." << endl;
 
   82   for (
int k = 0; 
k < nrNodes; 
k++) {
 
   85     ss << 
"marginal " << 
k;
 
  
std::shared_ptr< BayesNetType > eliminateSequential(OptionalOrderingType orderingType={}, const Eliminate &function=EliminationTraitsType::DefaultEliminate, OptionalVariableIndex variableIndex={}) const
EIGEN_STRONG_INLINE Packet4f print(const Packet4f &a)
void print(const std::string &s="BayesNet", const KeyFormatter &formatter=DefaultKeyFormatter) const override
int main(int argc, char **argv)
static const DiscreteFactorGraph factorGraph(bayesNet)
static std::stringstream ss
static const DiscreteValues mpe
A class for computing marginals in a DiscreteFactorGraph.
static enum @1096 ordering
void add(const DiscreteKey &key, const std::string &spec)
std::pair< Key, size_t > DiscreteKey
std::shared_ptr< This > shared_ptr
DiscreteValues optimize(OptionalOrderingType orderingType={}) const
Find the maximum probable explanation (MPE) by doing max-product.
Marginals marginals(graph, result)
static constexpr double k
gtsam
Author(s): 
autogenerated on Wed May 28 2025 03:01:24