gtest/test/gtest_unittest.cc
Go to the documentation of this file.
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself. This verifies that the basic constructs of
33 // Google Test work.
34 
35 #include "gtest/gtest.h"
36 
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42  || testing::GTEST_FLAG(break_on_failure)
43  || testing::GTEST_FLAG(catch_exceptions)
44  || testing::GTEST_FLAG(color) != "unknown"
45  || testing::GTEST_FLAG(filter) != "unknown"
46  || testing::GTEST_FLAG(list_tests)
47  || testing::GTEST_FLAG(output) != "unknown"
48  || testing::GTEST_FLAG(print_time)
49  || testing::GTEST_FLAG(random_seed)
50  || testing::GTEST_FLAG(repeat) > 0
51  || testing::GTEST_FLAG(show_internal_stack_frames)
52  || testing::GTEST_FLAG(shuffle)
53  || testing::GTEST_FLAG(stack_trace_depth) > 0
54  || testing::GTEST_FLAG(stream_result_to) != "unknown"
55  || testing::GTEST_FLAG(throw_on_failure);
56  EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h> // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <map>
65 #include <vector>
66 #include <ostream>
67 
68 #include "gtest/gtest-spi.h"
69 
70 // Indicates that this translation unit is part of Google Test's
71 // implementation. It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error. This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78 
79 namespace testing {
80 namespace internal {
81 
82 #if GTEST_CAN_STREAM_RESULTS_
83 
84 class StreamingListenerTest : public Test {
85  public:
86  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87  public:
88  // Sends a string to the socket.
89  virtual void Send(const string& message) { output_ += message; }
90 
91  string output_;
92  };
93 
94  StreamingListenerTest()
95  : fake_sock_writer_(new FakeSocketWriter),
96  streamer_(fake_sock_writer_),
97  test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98 
99  protected:
100  string* output() { return &(fake_sock_writer_->output_); }
101 
102  FakeSocketWriter* const fake_sock_writer_;
103  StreamingListener streamer_;
104  UnitTest unit_test_;
105  TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
106 };
107 
108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109  *output() = "";
110  streamer_.OnTestProgramEnd(unit_test_);
111  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112 }
113 
114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115  *output() = "";
116  streamer_.OnTestIterationEnd(unit_test_, 42);
117  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118 }
119 
120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
121  *output() = "";
122  streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124 }
125 
126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127  *output() = "";
128  streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130 }
131 
132 TEST_F(StreamingListenerTest, OnTestStart) {
133  *output() = "";
134  streamer_.OnTestStart(test_info_obj_);
135  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136 }
137 
138 TEST_F(StreamingListenerTest, OnTestEnd) {
139  *output() = "";
140  streamer_.OnTestEnd(test_info_obj_);
141  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142 }
143 
144 TEST_F(StreamingListenerTest, OnTestPartResult) {
145  *output() = "";
146  streamer_.OnTestPartResult(TestPartResult(
147  TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148 
149  // Meta characters in the failure message should be properly escaped.
150  EXPECT_EQ(
151  "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152  *output());
153 }
154 
155 #endif // GTEST_CAN_STREAM_RESULTS_
156 
157 // Provides access to otherwise private parts of the TestEventListeners class
158 // that are needed to test it.
160  public:
162  return listeners->repeater();
163  }
164 
166  TestEventListener* listener) {
167  listeners->SetDefaultResultPrinter(listener);
168  }
170  TestEventListener* listener) {
171  listeners->SetDefaultXmlGenerator(listener);
172  }
173 
174  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175  return listeners.EventForwardingEnabled();
176  }
177 
178  static void SuppressEventForwarding(TestEventListeners* listeners) {
179  listeners->SuppressEventForwarding();
180  }
181 };
182 
183 class UnitTestRecordPropertyTestHelper : public Test {
184  protected:
186 
187  // Forwards to UnitTest::RecordProperty() to bypass access controls.
188  void UnitTestRecordProperty(const char* key, const std::string& value) {
189  unit_test_.RecordProperty(key, value);
190  }
191 
192  UnitTest unit_test_;
193 };
194 
195 } // namespace internal
196 } // namespace testing
197 
201 using testing::DoubleLE;
204 using testing::FloatLE;
205 using testing::GTEST_FLAG(also_run_disabled_tests);
206 using testing::GTEST_FLAG(break_on_failure);
207 using testing::GTEST_FLAG(catch_exceptions);
208 using testing::GTEST_FLAG(color);
209 using testing::GTEST_FLAG(death_test_use_fork);
210 using testing::GTEST_FLAG(filter);
211 using testing::GTEST_FLAG(list_tests);
213 using testing::GTEST_FLAG(print_time);
214 using testing::GTEST_FLAG(random_seed);
215 using testing::GTEST_FLAG(repeat);
216 using testing::GTEST_FLAG(show_internal_stack_frames);
217 using testing::GTEST_FLAG(shuffle);
218 using testing::GTEST_FLAG(stack_trace_depth);
219 using testing::GTEST_FLAG(stream_result_to);
220 using testing::GTEST_FLAG(throw_on_failure);
223 using testing::Message;
226 using testing::Test;
227 using testing::TestCase;
229 using testing::TestInfo;
233 using testing::TestResult;
235 using testing::UnitTest;
289 
290 #if GTEST_HAS_STREAM_REDIRECTION
293 #endif
294 
295 #if GTEST_IS_THREADSAFE
296 using testing::internal::ThreadWithParam;
297 #endif
298 
299 class TestingVector : public std::vector<int> {
300 };
301 
302 ::std::ostream& operator<<(::std::ostream& os,
303  const TestingVector& vector) {
304  os << "{ ";
305  for (size_t i = 0; i < vector.size(); i++) {
306  os << vector[i] << " ";
307  }
308  os << "}";
309  return os;
310 }
311 
312 // This line tests that we can define tests in an unnamed namespace.
313 namespace {
314 
315 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
316  const int seed = GetRandomSeedFromFlag(0);
317  EXPECT_LE(1, seed);
318  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
319 }
320 
321 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
325  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
327 }
328 
329 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
330  const int seed1 = GetRandomSeedFromFlag(-1);
331  EXPECT_LE(1, seed1);
332  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
333 
334  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
335  EXPECT_LE(1, seed2);
336  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
337 }
338 
339 TEST(GetNextRandomSeedTest, WorksForValidInput) {
342  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
345 
346  // We deliberately don't test GetNextRandomSeed() with invalid
347  // inputs, as that requires death tests, which are expensive. This
348  // is fine as GetNextRandomSeed() is internal and has a
349  // straightforward definition.
350 }
351 
352 static void ClearCurrentTestPartResults() {
354  GetUnitTestImpl()->current_test_result());
355 }
356 
357 // Tests GetTypeId.
358 
359 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
360  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
361  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
362 }
363 
364 class SubClassOfTest : public Test {};
365 class AnotherSubClassOfTest : public Test {};
366 
367 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
368  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
369  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
370  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
371  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
372  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
373  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
374 }
375 
376 // Verifies that GetTestTypeId() returns the same value, no matter it
377 // is called from inside Google Test or outside of it.
378 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
380 }
381 
382 // Tests FormatTimeInMillisAsSeconds().
383 
384 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
386 }
387 
388 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
394 }
395 
396 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
397  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
398  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
399  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
400  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
402 }
403 
404 // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
405 // for particular dates below was verified in Python using
406 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
407 
408 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
409 // have to set up a particular timezone to obtain predictable results.
410 class FormatEpochTimeInMillisAsIso8601Test : public Test {
411  public:
412  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
413  // 32 bits, even when 64-bit integer types are available. We have to
414  // force the constants to have a 64-bit type here.
415  static const TimeInMillis kMillisPerSec = 1000;
416 
417  private:
418  virtual void SetUp() {
419  saved_tz_ = NULL;
420 #if _MSC_VER
421 # pragma warning(push) // Saves the current warning state.
422 # pragma warning(disable:4996) // Temporarily disables warning 4996
423  // (function or variable may be unsafe
424  // for getenv, function is deprecated for
425  // strdup).
426  if (getenv("TZ"))
427  saved_tz_ = strdup(getenv("TZ"));
428 # pragma warning(pop) // Restores the warning state again.
429 #else
430  if (getenv("TZ"))
431  saved_tz_ = strdup(getenv("TZ"));
432 #endif
433 
434  // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We
435  // cannot use the local time zone because the function's output depends
436  // on the time zone.
437  SetTimeZone("UTC+00");
438  }
439 
440  virtual void TearDown() {
441  SetTimeZone(saved_tz_);
442  free(const_cast<char*>(saved_tz_));
443  saved_tz_ = NULL;
444  }
445 
446  static void SetTimeZone(const char* time_zone) {
447  // tzset() distinguishes between the TZ variable being present and empty
448  // and not being present, so we have to consider the case of time_zone
449  // being NULL.
450 #if _MSC_VER
451  // ...Unless it's MSVC, whose standard library's _putenv doesn't
452  // distinguish between an empty and a missing variable.
453  const std::string env_var =
454  std::string("TZ=") + (time_zone ? time_zone : "");
455  _putenv(env_var.c_str());
456 # pragma warning(push) // Saves the current warning state.
457 # pragma warning(disable:4996) // Temporarily disables warning 4996
458  // (function is deprecated).
459  tzset();
460 # pragma warning(pop) // Restores the warning state again.
461 #else
462  if (time_zone) {
463  setenv(("TZ"), time_zone, 1);
464  } else {
465  unsetenv("TZ");
466  }
467  tzset();
468 #endif
469  }
470 
471  const char* saved_tz_;
472 };
473 
474 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
475 
476 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
477  EXPECT_EQ("2011-10-31T18:52:42",
478  FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
479 }
480 
481 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
482  EXPECT_EQ(
483  "2011-10-31T18:52:42",
484  FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
485 }
486 
487 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
488  EXPECT_EQ("2011-09-03T05:07:02",
489  FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
490 }
491 
492 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
493  EXPECT_EQ("2011-09-28T17:08:22",
494  FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
495 }
496 
497 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
498  EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
499 }
500 
501 #if GTEST_CAN_COMPARE_NULL
502 
503 # ifdef __BORLANDC__
504 // Silences warnings: "Condition is always true", "Unreachable code"
505 # pragma option push -w-ccc -w-rch
506 # endif
507 
508 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
509 // pointer literal.
510 TEST(NullLiteralTest, IsTrueForNullLiterals) {
515 }
516 
517 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
518 // pointer literal.
519 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
523  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
524 }
525 
526 # ifdef __BORLANDC__
527 // Restores warnings after previous "#pragma option push" suppressed them.
528 # pragma option pop
529 # endif
530 
531 #endif // GTEST_CAN_COMPARE_NULL
532 //
533 // Tests CodePointToUtf8().
534 
535 // Tests that the NUL character L'\0' is encoded correctly.
536 TEST(CodePointToUtf8Test, CanEncodeNul) {
537  EXPECT_EQ("", CodePointToUtf8(L'\0'));
538 }
539 
540 // Tests that ASCII characters are encoded correctly.
541 TEST(CodePointToUtf8Test, CanEncodeAscii) {
542  EXPECT_EQ("a", CodePointToUtf8(L'a'));
543  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
544  EXPECT_EQ("&", CodePointToUtf8(L'&'));
545  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
546 }
547 
548 // Tests that Unicode code-points that have 8 to 11 bits are encoded
549 // as 110xxxxx 10xxxxxx.
550 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
551  // 000 1101 0011 => 110-00011 10-010011
552  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
553 
554  // 101 0111 0110 => 110-10101 10-110110
555  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
556  // in wide strings and wide chars. In order to accomodate them, we have to
557  // introduce such character constants as integers.
558  EXPECT_EQ("\xD5\xB6",
559  CodePointToUtf8(static_cast<wchar_t>(0x576)));
560 }
561 
562 // Tests that Unicode code-points that have 12 to 16 bits are encoded
563 // as 1110xxxx 10xxxxxx 10xxxxxx.
564 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
565  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
566  EXPECT_EQ("\xE0\xA3\x93",
567  CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
568 
569  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
570  EXPECT_EQ("\xEC\x9D\x8D",
571  CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
572 }
573 
574 #if !GTEST_WIDE_STRING_USES_UTF16_
575 // Tests in this group require a wchar_t to hold > 16 bits, and thus
576 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
577 // 16-bit wide. This code may not compile on those systems.
578 
579 // Tests that Unicode code-points that have 17 to 21 bits are encoded
580 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
581 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
582  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
583  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
584 
585  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
586  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
587 
588  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
589  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
590 }
591 
592 // Tests that encoding an invalid code-point generates the expected result.
593 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
594  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
595 }
596 
597 #endif // !GTEST_WIDE_STRING_USES_UTF16_
598 
599 // Tests WideStringToUtf8().
600 
601 // Tests that the NUL character L'\0' is encoded correctly.
602 TEST(WideStringToUtf8Test, CanEncodeNul) {
603  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
604  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
605 }
606 
607 // Tests that ASCII strings are encoded correctly.
608 TEST(WideStringToUtf8Test, CanEncodeAscii) {
609  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
610  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
611  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
612  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
613 }
614 
615 // Tests that Unicode code-points that have 8 to 11 bits are encoded
616 // as 110xxxxx 10xxxxxx.
617 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
618  // 000 1101 0011 => 110-00011 10-010011
619  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
620  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
621 
622  // 101 0111 0110 => 110-10101 10-110110
623  const wchar_t s[] = { 0x576, '\0' };
624  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
625  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
626 }
627 
628 // Tests that Unicode code-points that have 12 to 16 bits are encoded
629 // as 1110xxxx 10xxxxxx 10xxxxxx.
630 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
631  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
632  const wchar_t s1[] = { 0x8D3, '\0' };
633  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
634  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
635 
636  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
637  const wchar_t s2[] = { 0xC74D, '\0' };
638  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
639  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
640 }
641 
642 // Tests that the conversion stops when the function encounters \0 character.
643 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
644  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
645 }
646 
647 // Tests that the conversion stops when the function reaches the limit
648 // specified by the 'length' parameter.
649 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
650  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
651 }
652 
653 #if !GTEST_WIDE_STRING_USES_UTF16_
654 // Tests that Unicode code-points that have 17 to 21 bits are encoded
655 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
656 // on the systems using UTF-16 encoding.
657 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
658  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
659  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
660  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
661 
662  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
663  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
664  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
665 }
666 
667 // Tests that encoding an invalid code-point generates the expected result.
668 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
669  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
670  WideStringToUtf8(L"\xABCDFF", -1).c_str());
671 }
672 #else // !GTEST_WIDE_STRING_USES_UTF16_
673 // Tests that surrogate pairs are encoded correctly on the systems using
674 // UTF-16 encoding in the wide strings.
675 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
676  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
677  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
678 }
679 
680 // Tests that encoding an invalid UTF-16 surrogate pair
681 // generates the expected result.
682 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
683  // Leading surrogate is at the end of the string.
684  const wchar_t s1[] = { 0xD800, '\0' };
685  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
686  // Leading surrogate is not followed by the trailing surrogate.
687  const wchar_t s2[] = { 0xD800, 'M', '\0' };
688  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
689  // Trailing surrogate appearas without a leading surrogate.
690  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
691  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
692 }
693 #endif // !GTEST_WIDE_STRING_USES_UTF16_
694 
695 // Tests that codepoint concatenation works correctly.
696 #if !GTEST_WIDE_STRING_USES_UTF16_
697 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
698  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
699  EXPECT_STREQ(
700  "\xF4\x88\x98\xB4"
701  "\xEC\x9D\x8D"
702  "\n"
703  "\xD5\xB6"
704  "\xE0\xA3\x93"
705  "\xF4\x88\x98\xB4",
706  WideStringToUtf8(s, -1).c_str());
707 }
708 #else
709 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
710  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
711  EXPECT_STREQ(
712  "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
713  WideStringToUtf8(s, -1).c_str());
714 }
715 #endif // !GTEST_WIDE_STRING_USES_UTF16_
716 
717 // Tests the Random class.
718 
719 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
720  testing::internal::Random random(42);
722  random.Generate(0),
723  "Cannot generate a number in the range \\[0, 0\\)");
726  "Generation of a number in \\[0, 2147483649\\) was requested, "
727  "but this can only generate numbers in \\[0, 2147483648\\)");
728 }
729 
730 TEST(RandomTest, GeneratesNumbersWithinRange) {
731  const UInt32 kRange = 10000;
732  testing::internal::Random random(12345);
733  for (int i = 0; i < 10; i++) {
734  EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
735  }
736 
738  for (int i = 0; i < 10; i++) {
739  EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
740  }
741 }
742 
743 TEST(RandomTest, RepeatsWhenReseeded) {
744  const int kSeed = 123;
745  const int kArraySize = 10;
746  const UInt32 kRange = 10000;
747  UInt32 values[kArraySize];
748 
749  testing::internal::Random random(kSeed);
750  for (int i = 0; i < kArraySize; i++) {
751  values[i] = random.Generate(kRange);
752  }
753 
754  random.Reseed(kSeed);
755  for (int i = 0; i < kArraySize; i++) {
756  EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
757  }
758 }
759 
760 // Tests STL container utilities.
761 
762 // Tests CountIf().
763 
764 static bool IsPositive(int n) { return n > 0; }
765 
766 TEST(ContainerUtilityTest, CountIf) {
767  std::vector<int> v;
768  EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
769 
770  v.push_back(-1);
771  v.push_back(0);
772  EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
773 
774  v.push_back(2);
775  v.push_back(-10);
776  v.push_back(10);
777  EXPECT_EQ(2, CountIf(v, IsPositive));
778 }
779 
780 // Tests ForEach().
781 
782 static int g_sum = 0;
783 static void Accumulate(int n) { g_sum += n; }
784 
785 TEST(ContainerUtilityTest, ForEach) {
786  std::vector<int> v;
787  g_sum = 0;
788  ForEach(v, Accumulate);
789  EXPECT_EQ(0, g_sum); // Works for an empty container;
790 
791  g_sum = 0;
792  v.push_back(1);
793  ForEach(v, Accumulate);
794  EXPECT_EQ(1, g_sum); // Works for a container with one element.
795 
796  g_sum = 0;
797  v.push_back(20);
798  v.push_back(300);
799  ForEach(v, Accumulate);
800  EXPECT_EQ(321, g_sum);
801 }
802 
803 // Tests GetElementOr().
804 TEST(ContainerUtilityTest, GetElementOr) {
805  std::vector<char> a;
806  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
807 
808  a.push_back('a');
809  a.push_back('b');
810  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
811  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
812  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
813  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
814 }
815 
816 TEST(ContainerUtilityDeathTest, ShuffleRange) {
817  std::vector<int> a;
818  a.push_back(0);
819  a.push_back(1);
820  a.push_back(2);
821  testing::internal::Random random(1);
822 
824  ShuffleRange(&random, -1, 1, &a),
825  "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
827  ShuffleRange(&random, 4, 4, &a),
828  "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
830  ShuffleRange(&random, 3, 2, &a),
831  "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
833  ShuffleRange(&random, 3, 4, &a),
834  "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
835 }
836 
837 class VectorShuffleTest : public Test {
838  protected:
839  static const int kVectorSize = 20;
840 
841  VectorShuffleTest() : random_(1) {
842  for (int i = 0; i < kVectorSize; i++) {
843  vector_.push_back(i);
844  }
845  }
846 
847  static bool VectorIsCorrupt(const TestingVector& vector) {
848  if (kVectorSize != static_cast<int>(vector.size())) {
849  return true;
850  }
851 
852  bool found_in_vector[kVectorSize] = { false };
853  for (size_t i = 0; i < vector.size(); i++) {
854  const int e = vector[i];
855  if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
856  return true;
857  }
858  found_in_vector[e] = true;
859  }
860 
861  // Vector size is correct, elements' range is correct, no
862  // duplicate elements. Therefore no corruption has occurred.
863  return false;
864  }
865 
866  static bool VectorIsNotCorrupt(const TestingVector& vector) {
867  return !VectorIsCorrupt(vector);
868  }
869 
870  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
871  for (int i = begin; i < end; i++) {
872  if (i != vector[i]) {
873  return true;
874  }
875  }
876  return false;
877  }
878 
879  static bool RangeIsUnshuffled(
880  const TestingVector& vector, int begin, int end) {
881  return !RangeIsShuffled(vector, begin, end);
882  }
883 
884  static bool VectorIsShuffled(const TestingVector& vector) {
885  return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
886  }
887 
888  static bool VectorIsUnshuffled(const TestingVector& vector) {
889  return !VectorIsShuffled(vector);
890  }
891 
893  TestingVector vector_;
894 }; // class VectorShuffleTest
895 
896 const int VectorShuffleTest::kVectorSize;
897 
898 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
899  // Tests an empty range at the beginning...
900  ShuffleRange(&random_, 0, 0, &vector_);
901  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
902  ASSERT_PRED1(VectorIsUnshuffled, vector_);
903 
904  // ...in the middle...
905  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
906  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
907  ASSERT_PRED1(VectorIsUnshuffled, vector_);
908 
909  // ...at the end...
910  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
911  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
912  ASSERT_PRED1(VectorIsUnshuffled, vector_);
913 
914  // ...and past the end.
915  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
916  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917  ASSERT_PRED1(VectorIsUnshuffled, vector_);
918 }
919 
920 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
921  // Tests a size one range at the beginning...
922  ShuffleRange(&random_, 0, 1, &vector_);
923  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
924  ASSERT_PRED1(VectorIsUnshuffled, vector_);
925 
926  // ...in the middle...
927  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
928  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
929  ASSERT_PRED1(VectorIsUnshuffled, vector_);
930 
931  // ...and at the end.
932  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
933  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
934  ASSERT_PRED1(VectorIsUnshuffled, vector_);
935 }
936 
937 // Because we use our own random number generator and a fixed seed,
938 // we can guarantee that the following "random" tests will succeed.
939 
940 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
941  Shuffle(&random_, &vector_);
942  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
943  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
944 
945  // Tests the first and last elements in particular to ensure that
946  // there are no off-by-one problems in our shuffle algorithm.
947  EXPECT_NE(0, vector_[0]);
948  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
949 }
950 
951 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
952  const int kRangeSize = kVectorSize/2;
953 
954  ShuffleRange(&random_, 0, kRangeSize, &vector_);
955 
956  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
957  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
958  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
959 }
960 
961 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
962  const int kRangeSize = kVectorSize / 2;
963  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
964 
965  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
966  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
967  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
968 }
969 
970 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
971  int kRangeSize = kVectorSize/3;
972  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
973 
974  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
976  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
977  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
978 }
979 
980 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
981  TestingVector vector2;
982  for (int i = 0; i < kVectorSize; i++) {
983  vector2.push_back(i);
984  }
985 
986  random_.Reseed(1234);
987  Shuffle(&random_, &vector_);
988  random_.Reseed(1234);
989  Shuffle(&random_, &vector2);
990 
991  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
992  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
993 
994  for (int i = 0; i < kVectorSize; i++) {
995  EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
996  }
997 }
998 
999 // Tests the size of the AssertHelper class.
1000 
1001 TEST(AssertHelperTest, AssertHelperIsSmall) {
1002  // To avoid breaking clients that use lots of assertions in one
1003  // function, we cannot grow the size of AssertHelper.
1004  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1005 }
1006 
1007 // Tests String::EndsWithCaseInsensitive().
1008 TEST(StringTest, EndsWithCaseInsensitive) {
1009  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1010  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1013 
1017 }
1018 
1019 // C++Builder's preprocessor is buggy; it fails to expand macros that
1020 // appear in macro parameters after wide char literals. Provide an alias
1021 // for NULL as a workaround.
1022 static const wchar_t* const kNull = NULL;
1023 
1024 // Tests String::CaseInsensitiveWideCStringEquals
1025 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1034 }
1035 
1036 #if GTEST_OS_WINDOWS
1037 
1038 // Tests String::ShowWideCString().
1039 TEST(StringTest, ShowWideCString) {
1040  EXPECT_STREQ("(null)",
1041  String::ShowWideCString(NULL).c_str());
1042  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1043  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1044 }
1045 
1046 # if GTEST_OS_WINDOWS_MOBILE
1047 TEST(StringTest, AnsiAndUtf16Null) {
1048  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1049  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1050 }
1051 
1052 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1053  const char* ansi = String::Utf16ToAnsi(L"str");
1054  EXPECT_STREQ("str", ansi);
1055  delete [] ansi;
1056  const WCHAR* utf16 = String::AnsiToUtf16("str");
1057  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1058  delete [] utf16;
1059 }
1060 
1061 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1062  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1063  EXPECT_STREQ(".:\\ \"*?", ansi);
1064  delete [] ansi;
1065  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1066  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1067  delete [] utf16;
1068 }
1069 # endif // GTEST_OS_WINDOWS_MOBILE
1070 
1071 #endif // GTEST_OS_WINDOWS
1072 
1073 // Tests TestProperty construction.
1074 TEST(TestPropertyTest, StringValue) {
1075  TestProperty property("key", "1");
1076  EXPECT_STREQ("key", property.key());
1077  EXPECT_STREQ("1", property.value());
1078 }
1079 
1080 // Tests TestProperty replacing a value.
1081 TEST(TestPropertyTest, ReplaceStringValue) {
1082  TestProperty property("key", "1");
1083  EXPECT_STREQ("1", property.value());
1084  property.SetValue("2");
1085  EXPECT_STREQ("2", property.value());
1086 }
1087 
1088 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1089 // functions (i.e. their definitions cannot be inlined at the call
1090 // sites), or C++Builder won't compile the code.
1091 static void AddFatalFailure() {
1092  FAIL() << "Expected fatal failure.";
1093 }
1094 
1095 static void AddNonfatalFailure() {
1096  ADD_FAILURE() << "Expected non-fatal failure.";
1097 }
1098 
1099 class ScopedFakeTestPartResultReporterTest : public Test {
1100  public: // Must be public and not protected due to a bug in g++ 3.4.2.
1101  enum FailureMode {
1102  FATAL_FAILURE,
1103  NONFATAL_FAILURE
1104  };
1105  static void AddFailure(FailureMode failure) {
1106  if (failure == FATAL_FAILURE) {
1107  AddFatalFailure();
1108  } else {
1109  AddNonfatalFailure();
1110  }
1111  }
1112 };
1113 
1114 // Tests that ScopedFakeTestPartResultReporter intercepts test
1115 // failures.
1116 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1117  TestPartResultArray results;
1118  {
1121  &results);
1122  AddFailure(NONFATAL_FAILURE);
1123  AddFailure(FATAL_FAILURE);
1124  }
1125 
1126  EXPECT_EQ(2, results.size());
1129 }
1130 
1131 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1132  TestPartResultArray results;
1133  {
1134  // Tests, that the deprecated constructor still works.
1135  ScopedFakeTestPartResultReporter reporter(&results);
1136  AddFailure(NONFATAL_FAILURE);
1137  }
1138  EXPECT_EQ(1, results.size());
1139 }
1140 
1141 #if GTEST_IS_THREADSAFE
1142 
1143 class ScopedFakeTestPartResultReporterWithThreadsTest
1144  : public ScopedFakeTestPartResultReporterTest {
1145  protected:
1146  static void AddFailureInOtherThread(FailureMode failure) {
1147  ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1148  thread.Join();
1149  }
1150 };
1151 
1152 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1153  InterceptsTestFailuresInAllThreads) {
1154  TestPartResultArray results;
1155  {
1158  AddFailure(NONFATAL_FAILURE);
1159  AddFailure(FATAL_FAILURE);
1160  AddFailureInOtherThread(NONFATAL_FAILURE);
1161  AddFailureInOtherThread(FATAL_FAILURE);
1162  }
1163 
1164  EXPECT_EQ(4, results.size());
1169 }
1170 
1171 #endif // GTEST_IS_THREADSAFE
1172 
1173 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1174 // work even if the failure is generated in a called function rather than
1175 // the current context.
1176 
1177 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1178 
1179 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1180  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1181 }
1182 
1183 #if GTEST_HAS_GLOBAL_STRING
1184 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1185  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1186 }
1187 #endif
1188 
1189 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1190  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1191  ::std::string("Expected fatal failure."));
1192 }
1193 
1194 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1195  // We have another test below to verify that the macro catches fatal
1196  // failures generated on another thread.
1197  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1198  "Expected fatal failure.");
1199 }
1200 
1201 #ifdef __BORLANDC__
1202 // Silences warnings: "Condition is always true"
1203 # pragma option push -w-ccc
1204 #endif
1205 
1206 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1207 // function even when the statement in it contains ASSERT_*.
1208 
1209 int NonVoidFunction() {
1210  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1212  return 0;
1213 }
1214 
1215 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1216  NonVoidFunction();
1217 }
1218 
1219 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1220 // current function even though 'statement' generates a fatal failure.
1221 
1222 void DoesNotAbortHelper(bool* aborted) {
1223  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1225 
1226  *aborted = false;
1227 }
1228 
1229 #ifdef __BORLANDC__
1230 // Restores warnings after previous "#pragma option push" suppressed them.
1231 # pragma option pop
1232 #endif
1233 
1234 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1235  bool aborted = true;
1236  DoesNotAbortHelper(&aborted);
1237  EXPECT_FALSE(aborted);
1238 }
1239 
1240 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1241 // statement that contains a macro which expands to code containing an
1242 // unprotected comma.
1243 
1244 static int global_var = 0;
1245 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1246 
1247 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1248 #ifndef __BORLANDC__
1249  // ICE's in C++Builder.
1252  AddFatalFailure();
1253  }, "");
1254 #endif
1255 
1258  AddFatalFailure();
1259  }, "");
1260 }
1261 
1262 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1263 
1264 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1265 
1266 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1267  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1268  "Expected non-fatal failure.");
1269 }
1270 
1271 #if GTEST_HAS_GLOBAL_STRING
1272 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1273  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1274  ::string("Expected non-fatal failure."));
1275 }
1276 #endif
1277 
1278 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1279  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1280  ::std::string("Expected non-fatal failure."));
1281 }
1282 
1283 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1284  // We have another test below to verify that the macro catches
1285  // non-fatal failures generated on another thread.
1286  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1287  "Expected non-fatal failure.");
1288 }
1289 
1290 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1291 // statement that contains a macro which expands to code containing an
1292 // unprotected comma.
1293 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1296  AddNonfatalFailure();
1297  }, "");
1298 
1301  AddNonfatalFailure();
1302  }, "");
1303 }
1304 
1305 #if GTEST_IS_THREADSAFE
1306 
1307 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1308  ExpectFailureWithThreadsTest;
1309 
1310 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1311  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1312  "Expected fatal failure.");
1313 }
1314 
1315 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1317  AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1318 }
1319 
1320 #endif // GTEST_IS_THREADSAFE
1321 
1322 // Tests the TestProperty class.
1323 
1324 TEST(TestPropertyTest, ConstructorWorks) {
1325  const TestProperty property("key", "value");
1326  EXPECT_STREQ("key", property.key());
1327  EXPECT_STREQ("value", property.value());
1328 }
1329 
1330 TEST(TestPropertyTest, SetValue) {
1331  TestProperty property("key", "value_1");
1332  EXPECT_STREQ("key", property.key());
1333  property.SetValue("value_2");
1334  EXPECT_STREQ("key", property.key());
1335  EXPECT_STREQ("value_2", property.value());
1336 }
1337 
1338 // Tests the TestResult class
1339 
1340 // The test fixture for testing TestResult.
1341 class TestResultTest : public Test {
1342  protected:
1343  typedef std::vector<TestPartResult> TPRVector;
1344 
1345  // We make use of 2 TestPartResult objects,
1346  TestPartResult * pr1, * pr2;
1347 
1348  // ... and 3 TestResult objects.
1349  TestResult * r0, * r1, * r2;
1350 
1351  virtual void SetUp() {
1352  // pr1 is for success.
1354  "foo/bar.cc",
1355  10,
1356  "Success!");
1357 
1358  // pr2 is for fatal failure.
1360  "foo/bar.cc",
1361  -1, // This line number means "unknown"
1362  "Failure!");
1363 
1364  // Creates the TestResult objects.
1365  r0 = new TestResult();
1366  r1 = new TestResult();
1367  r2 = new TestResult();
1368 
1369  // In order to test TestResult, we need to modify its internal
1370  // state, in particular the TestPartResult vector it holds.
1371  // test_part_results() returns a const reference to this vector.
1372  // We cast it to a non-const object s.t. it can be modified (yes,
1373  // this is a hack).
1374  TPRVector* results1 = const_cast<TPRVector*>(
1376  TPRVector* results2 = const_cast<TPRVector*>(
1378 
1379  // r0 is an empty TestResult.
1380 
1381  // r1 contains a single SUCCESS TestPartResult.
1382  results1->push_back(*pr1);
1383 
1384  // r2 contains a SUCCESS, and a FAILURE.
1385  results2->push_back(*pr1);
1386  results2->push_back(*pr2);
1387  }
1388 
1389  virtual void TearDown() {
1390  delete pr1;
1391  delete pr2;
1392 
1393  delete r0;
1394  delete r1;
1395  delete r2;
1396  }
1397 
1398  // Helper that compares two two TestPartResults.
1399  static void CompareTestPartResult(const TestPartResult& expected,
1400  const TestPartResult& actual) {
1401  EXPECT_EQ(expected.type(), actual.type());
1402  EXPECT_STREQ(expected.file_name(), actual.file_name());
1403  EXPECT_EQ(expected.line_number(), actual.line_number());
1404  EXPECT_STREQ(expected.summary(), actual.summary());
1405  EXPECT_STREQ(expected.message(), actual.message());
1406  EXPECT_EQ(expected.passed(), actual.passed());
1407  EXPECT_EQ(expected.failed(), actual.failed());
1408  EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1409  EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1410  }
1411 };
1412 
1413 // Tests TestResult::total_part_count().
1414 TEST_F(TestResultTest, total_part_count) {
1415  ASSERT_EQ(0, r0->total_part_count());
1416  ASSERT_EQ(1, r1->total_part_count());
1417  ASSERT_EQ(2, r2->total_part_count());
1418 }
1419 
1420 // Tests TestResult::Passed().
1421 TEST_F(TestResultTest, Passed) {
1422  ASSERT_TRUE(r0->Passed());
1423  ASSERT_TRUE(r1->Passed());
1424  ASSERT_FALSE(r2->Passed());
1425 }
1426 
1427 // Tests TestResult::Failed().
1428 TEST_F(TestResultTest, Failed) {
1429  ASSERT_FALSE(r0->Failed());
1430  ASSERT_FALSE(r1->Failed());
1431  ASSERT_TRUE(r2->Failed());
1432 }
1433 
1434 // Tests TestResult::GetTestPartResult().
1435 
1436 typedef TestResultTest TestResultDeathTest;
1437 
1438 TEST_F(TestResultDeathTest, GetTestPartResult) {
1439  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1440  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1441  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1442  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1443 }
1444 
1445 // Tests TestResult has no properties when none are added.
1446 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1447  TestResult test_result;
1448  ASSERT_EQ(0, test_result.test_property_count());
1449 }
1450 
1451 // Tests TestResult has the expected property when added.
1452 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1453  TestResult test_result;
1454  TestProperty property("key_1", "1");
1455  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1456  ASSERT_EQ(1, test_result.test_property_count());
1457  const TestProperty& actual_property = test_result.GetTestProperty(0);
1458  EXPECT_STREQ("key_1", actual_property.key());
1459  EXPECT_STREQ("1", actual_property.value());
1460 }
1461 
1462 // Tests TestResult has multiple properties when added.
1463 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1464  TestResult test_result;
1465  TestProperty property_1("key_1", "1");
1466  TestProperty property_2("key_2", "2");
1467  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1468  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1469  ASSERT_EQ(2, test_result.test_property_count());
1470  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1471  EXPECT_STREQ("key_1", actual_property_1.key());
1472  EXPECT_STREQ("1", actual_property_1.value());
1473 
1474  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1475  EXPECT_STREQ("key_2", actual_property_2.key());
1476  EXPECT_STREQ("2", actual_property_2.value());
1477 }
1478 
1479 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
1480 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1481  TestResult test_result;
1482  TestProperty property_1_1("key_1", "1");
1483  TestProperty property_2_1("key_2", "2");
1484  TestProperty property_1_2("key_1", "12");
1485  TestProperty property_2_2("key_2", "22");
1486  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1487  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1488  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1489  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1490 
1491  ASSERT_EQ(2, test_result.test_property_count());
1492  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1493  EXPECT_STREQ("key_1", actual_property_1.key());
1494  EXPECT_STREQ("12", actual_property_1.value());
1495 
1496  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1497  EXPECT_STREQ("key_2", actual_property_2.key());
1498  EXPECT_STREQ("22", actual_property_2.value());
1499 }
1500 
1501 // Tests TestResult::GetTestProperty().
1502 TEST(TestResultPropertyTest, GetTestProperty) {
1503  TestResult test_result;
1504  TestProperty property_1("key_1", "1");
1505  TestProperty property_2("key_2", "2");
1506  TestProperty property_3("key_3", "3");
1507  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1508  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1509  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1510 
1511  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1512  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1513  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1514 
1515  EXPECT_STREQ("key_1", fetched_property_1.key());
1516  EXPECT_STREQ("1", fetched_property_1.value());
1517 
1518  EXPECT_STREQ("key_2", fetched_property_2.key());
1519  EXPECT_STREQ("2", fetched_property_2.value());
1520 
1521  EXPECT_STREQ("key_3", fetched_property_3.key());
1522  EXPECT_STREQ("3", fetched_property_3.value());
1523 
1524  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1525  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1526 }
1527 
1528 // Tests that GTestFlagSaver works on Windows and Mac.
1529 
1530 class GTestFlagSaverTest : public Test {
1531  protected:
1532  // Saves the Google Test flags such that we can restore them later, and
1533  // then sets them to their default values. This will be called
1534  // before the first test in this test case is run.
1535  static void SetUpTestCase() {
1536  saver_ = new GTestFlagSaver;
1537 
1538  GTEST_FLAG(also_run_disabled_tests) = false;
1539  GTEST_FLAG(break_on_failure) = false;
1540  GTEST_FLAG(catch_exceptions) = false;
1541  GTEST_FLAG(death_test_use_fork) = false;
1542  GTEST_FLAG(color) = "auto";
1543  GTEST_FLAG(filter) = "";
1544  GTEST_FLAG(list_tests) = false;
1545  GTEST_FLAG(output) = "";
1546  GTEST_FLAG(print_time) = true;
1547  GTEST_FLAG(random_seed) = 0;
1548  GTEST_FLAG(repeat) = 1;
1549  GTEST_FLAG(shuffle) = false;
1550  GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1551  GTEST_FLAG(stream_result_to) = "";
1552  GTEST_FLAG(throw_on_failure) = false;
1553  }
1554 
1555  // Restores the Google Test flags that the tests have modified. This will
1556  // be called after the last test in this test case is run.
1557  static void TearDownTestCase() {
1558  delete saver_;
1559  saver_ = NULL;
1560  }
1561 
1562  // Verifies that the Google Test flags have their default values, and then
1563  // modifies each of them.
1564  void VerifyAndModifyFlags() {
1565  EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1566  EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1567  EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1568  EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1569  EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1570  EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1571  EXPECT_FALSE(GTEST_FLAG(list_tests));
1572  EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1573  EXPECT_TRUE(GTEST_FLAG(print_time));
1574  EXPECT_EQ(0, GTEST_FLAG(random_seed));
1575  EXPECT_EQ(1, GTEST_FLAG(repeat));
1576  EXPECT_FALSE(GTEST_FLAG(shuffle));
1577  EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1578  EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1579  EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1580 
1581  GTEST_FLAG(also_run_disabled_tests) = true;
1582  GTEST_FLAG(break_on_failure) = true;
1583  GTEST_FLAG(catch_exceptions) = true;
1584  GTEST_FLAG(color) = "no";
1585  GTEST_FLAG(death_test_use_fork) = true;
1586  GTEST_FLAG(filter) = "abc";
1587  GTEST_FLAG(list_tests) = true;
1588  GTEST_FLAG(output) = "xml:foo.xml";
1589  GTEST_FLAG(print_time) = false;
1590  GTEST_FLAG(random_seed) = 1;
1591  GTEST_FLAG(repeat) = 100;
1592  GTEST_FLAG(shuffle) = true;
1593  GTEST_FLAG(stack_trace_depth) = 1;
1594  GTEST_FLAG(stream_result_to) = "localhost:1234";
1595  GTEST_FLAG(throw_on_failure) = true;
1596  }
1597 
1598  private:
1599  // For saving Google Test flags during this test case.
1600  static GTestFlagSaver* saver_;
1601 };
1602 
1603 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1604 
1605 // Google Test doesn't guarantee the order of tests. The following two
1606 // tests are designed to work regardless of their order.
1607 
1608 // Modifies the Google Test flags in the test body.
1609 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1610  VerifyAndModifyFlags();
1611 }
1612 
1613 // Verifies that the Google Test flags in the body of the previous test were
1614 // restored to their original values.
1615 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1616  VerifyAndModifyFlags();
1617 }
1618 
1619 // Sets an environment variable with the given name to the given
1620 // value. If the value argument is "", unsets the environment
1621 // variable. The caller must ensure that both arguments are not NULL.
1622 static void SetEnv(const char* name, const char* value) {
1623 #if GTEST_OS_WINDOWS_MOBILE
1624  // Environment variables are not supported on Windows CE.
1625  return;
1626 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1627  // C++Builder's putenv only stores a pointer to its parameter; we have to
1628  // ensure that the string remains valid as long as it might be needed.
1629  // We use an std::map to do so.
1630  static std::map<std::string, std::string*> added_env;
1631 
1632  // Because putenv stores a pointer to the string buffer, we can't delete the
1633  // previous string (if present) until after it's replaced.
1634  std::string *prev_env = NULL;
1635  if (added_env.find(name) != added_env.end()) {
1636  prev_env = added_env[name];
1637  }
1638  added_env[name] = new std::string(
1639  (Message() << name << "=" << value).GetString());
1640 
1641  // The standard signature of putenv accepts a 'char*' argument. Other
1642  // implementations, like C++Builder's, accept a 'const char*'.
1643  // We cast away the 'const' since that would work for both variants.
1644  putenv(const_cast<char*>(added_env[name]->c_str()));
1645  delete prev_env;
1646 #elif GTEST_OS_WINDOWS // If we are on Windows proper.
1647  _putenv((Message() << name << "=" << value).GetString().c_str());
1648 #else
1649  if (*value == '\0') {
1650  unsetenv(name);
1651  } else {
1652  setenv(name, value, 1);
1653  }
1654 #endif // GTEST_OS_WINDOWS_MOBILE
1655 }
1656 
1657 #if !GTEST_OS_WINDOWS_MOBILE
1658 // Environment variables are not supported on Windows CE.
1659 
1661 
1662 // Tests Int32FromGTestEnv().
1663 
1664 // Tests that Int32FromGTestEnv() returns the default value when the
1665 // environment variable is not set.
1666 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1667  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1668  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1669 }
1670 
1671 // Tests that Int32FromGTestEnv() returns the default value when the
1672 // environment variable overflows as an Int32.
1673 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1674  printf("(expecting 2 warnings)\n");
1675 
1676  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1677  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1678 
1679  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1680  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1681 }
1682 
1683 // Tests that Int32FromGTestEnv() returns the default value when the
1684 // environment variable does not represent a valid decimal integer.
1685 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1686  printf("(expecting 2 warnings)\n");
1687 
1688  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1689  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1690 
1691  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1692  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1693 }
1694 
1695 // Tests that Int32FromGTestEnv() parses and returns the value of the
1696 // environment variable when it represents a valid decimal integer in
1697 // the range of an Int32.
1698 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1699  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1700  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1701 
1702  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1703  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1704 }
1705 #endif // !GTEST_OS_WINDOWS_MOBILE
1706 
1707 // Tests ParseInt32Flag().
1708 
1709 // Tests that ParseInt32Flag() returns false and doesn't change the
1710 // output value when the flag has wrong format
1711 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1712  Int32 value = 123;
1713  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1714  EXPECT_EQ(123, value);
1715 
1716  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1717  EXPECT_EQ(123, value);
1718 }
1719 
1720 // Tests that ParseInt32Flag() returns false and doesn't change the
1721 // output value when the flag overflows as an Int32.
1722 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1723  printf("(expecting 2 warnings)\n");
1724 
1725  Int32 value = 123;
1726  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1727  EXPECT_EQ(123, value);
1728 
1729  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1730  EXPECT_EQ(123, value);
1731 }
1732 
1733 // Tests that ParseInt32Flag() returns false and doesn't change the
1734 // output value when the flag does not represent a valid decimal
1735 // integer.
1736 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1737  printf("(expecting 2 warnings)\n");
1738 
1739  Int32 value = 123;
1740  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1741  EXPECT_EQ(123, value);
1742 
1743  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1744  EXPECT_EQ(123, value);
1745 }
1746 
1747 // Tests that ParseInt32Flag() parses the value of the flag and
1748 // returns true when the flag represents a valid decimal integer in
1749 // the range of an Int32.
1750 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1751  Int32 value = 123;
1752  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1753  EXPECT_EQ(456, value);
1754 
1756  "abc", &value));
1757  EXPECT_EQ(-789, value);
1758 }
1759 
1760 // Tests that Int32FromEnvOrDie() parses the value of the var or
1761 // returns the correct default.
1762 // Environment variables are not supported on Windows CE.
1763 #if !GTEST_OS_WINDOWS_MOBILE
1764 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1765  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1766  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1767  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1768  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1769  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1770 }
1771 #endif // !GTEST_OS_WINDOWS_MOBILE
1772 
1773 // Tests that Int32FromEnvOrDie() aborts with an error message
1774 // if the variable is not an Int32.
1775 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1776  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1779  ".*");
1780 }
1781 
1782 // Tests that Int32FromEnvOrDie() aborts with an error message
1783 // if the variable cannot be represnted by an Int32.
1784 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1785  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1788  ".*");
1789 }
1790 
1791 // Tests that ShouldRunTestOnShard() selects all tests
1792 // where there is 1 shard.
1793 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1799 }
1800 
1801 class ShouldShardTest : public testing::Test {
1802  protected:
1803  virtual void SetUp() {
1804  index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1805  total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1806  }
1807 
1808  virtual void TearDown() {
1809  SetEnv(index_var_, "");
1810  SetEnv(total_var_, "");
1811  }
1812 
1813  const char* index_var_;
1814  const char* total_var_;
1815 };
1816 
1817 // Tests that sharding is disabled if neither of the environment variables
1818 // are set.
1819 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1820  SetEnv(index_var_, "");
1821  SetEnv(total_var_, "");
1822 
1823  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1824  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1825 }
1826 
1827 // Tests that sharding is not enabled if total_shards == 1.
1828 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1829  SetEnv(index_var_, "0");
1830  SetEnv(total_var_, "1");
1831  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1832  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1833 }
1834 
1835 // Tests that sharding is enabled if total_shards > 1 and
1836 // we are not in a death test subprocess.
1837 // Environment variables are not supported on Windows CE.
1838 #if !GTEST_OS_WINDOWS_MOBILE
1839 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1840  SetEnv(index_var_, "4");
1841  SetEnv(total_var_, "22");
1842  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1843  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1844 
1845  SetEnv(index_var_, "8");
1846  SetEnv(total_var_, "9");
1847  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1848  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1849 
1850  SetEnv(index_var_, "0");
1851  SetEnv(total_var_, "9");
1852  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1853  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1854 }
1855 #endif // !GTEST_OS_WINDOWS_MOBILE
1856 
1857 // Tests that we exit in error if the sharding values are not valid.
1858 
1859 typedef ShouldShardTest ShouldShardDeathTest;
1860 
1861 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1862  SetEnv(index_var_, "4");
1863  SetEnv(total_var_, "4");
1864  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1865 
1866  SetEnv(index_var_, "4");
1867  SetEnv(total_var_, "-2");
1868  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1869 
1870  SetEnv(index_var_, "5");
1871  SetEnv(total_var_, "");
1872  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1873 
1874  SetEnv(index_var_, "");
1875  SetEnv(total_var_, "5");
1876  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1877 }
1878 
1879 // Tests that ShouldRunTestOnShard is a partition when 5
1880 // shards are used.
1881 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1882  // Choose an arbitrary number of tests and shards.
1883  const int num_tests = 17;
1884  const int num_shards = 5;
1885 
1886  // Check partitioning: each test should be on exactly 1 shard.
1887  for (int test_id = 0; test_id < num_tests; test_id++) {
1888  int prev_selected_shard_index = -1;
1889  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1890  if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1891  if (prev_selected_shard_index < 0) {
1892  prev_selected_shard_index = shard_index;
1893  } else {
1894  ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1895  << shard_index << " are both selected to run test " << test_id;
1896  }
1897  }
1898  }
1899  }
1900 
1901  // Check balance: This is not required by the sharding protocol, but is a
1902  // desirable property for performance.
1903  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1904  int num_tests_on_shard = 0;
1905  for (int test_id = 0; test_id < num_tests; test_id++) {
1906  num_tests_on_shard +=
1907  ShouldRunTestOnShard(num_shards, shard_index, test_id);
1908  }
1909  EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1910  }
1911 }
1912 
1913 // For the same reason we are not explicitly testing everything in the
1914 // Test class, there are no separate tests for the following classes
1915 // (except for some trivial cases):
1916 //
1917 // TestCase, UnitTest, UnitTestResultPrinter.
1918 //
1919 // Similarly, there are no separate tests for the following macros:
1920 //
1921 // TEST, TEST_F, RUN_ALL_TESTS
1922 
1923 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1924  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1925  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1926 }
1927 
1928 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1929  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1930  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1931 }
1932 
1933 // When a property using a reserved key is supplied to this function, it
1934 // tests that a non-fatal failure is added, a fatal failure is not added,
1935 // and that the property is not recorded.
1936 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1937  const TestResult& test_result, const char* key) {
1938  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1939  ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1940  << "' recorded unexpectedly.";
1941 }
1942 
1943 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1944  const char* key) {
1945  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1946  ASSERT_TRUE(test_info != NULL);
1947  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1948  key);
1949 }
1950 
1951 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1952  const char* key) {
1953  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1954  ASSERT_TRUE(test_case != NULL);
1955  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1956  test_case->ad_hoc_test_result(), key);
1957 }
1958 
1959 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1960  const char* key) {
1961  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1962  UnitTest::GetInstance()->ad_hoc_test_result(), key);
1963 }
1964 
1965 // Tests that property recording functions in UnitTest outside of tests
1966 // functions correcly. Creating a separate instance of UnitTest ensures it
1967 // is in a state similar to the UnitTest's singleton's between tests.
1968 class UnitTestRecordPropertyTest :
1970  public:
1971  static void SetUpTestCase() {
1972  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1973  "disabled");
1974  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1975  "errors");
1976  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1977  "failures");
1978  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1979  "name");
1980  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1981  "tests");
1982  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1983  "time");
1984 
1985  Test::RecordProperty("test_case_key_1", "1");
1986  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1987  ASSERT_TRUE(test_case != NULL);
1988 
1990  EXPECT_STREQ("test_case_key_1",
1991  test_case->ad_hoc_test_result().GetTestProperty(0).key());
1992  EXPECT_STREQ("1",
1993  test_case->ad_hoc_test_result().GetTestProperty(0).value());
1994  }
1995 };
1996 
1997 // Tests TestResult has the expected property when added.
1998 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
1999  UnitTestRecordProperty("key_1", "1");
2000 
2001  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2002 
2003  EXPECT_STREQ("key_1",
2004  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2005  EXPECT_STREQ("1",
2006  unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2007 }
2008 
2009 // Tests TestResult has multiple properties when added.
2010 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2011  UnitTestRecordProperty("key_1", "1");
2012  UnitTestRecordProperty("key_2", "2");
2013 
2014  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2015 
2016  EXPECT_STREQ("key_1",
2017  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2018  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2019 
2020  EXPECT_STREQ("key_2",
2021  unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2022  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2023 }
2024 
2025 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
2026 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2027  UnitTestRecordProperty("key_1", "1");
2028  UnitTestRecordProperty("key_2", "2");
2029  UnitTestRecordProperty("key_1", "12");
2030  UnitTestRecordProperty("key_2", "22");
2031 
2032  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2033 
2034  EXPECT_STREQ("key_1",
2035  unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2036  EXPECT_STREQ("12",
2037  unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2038 
2039  EXPECT_STREQ("key_2",
2040  unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2041  EXPECT_STREQ("22",
2042  unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2043 }
2044 
2045 TEST_F(UnitTestRecordPropertyTest,
2046  AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2047  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2048  "name");
2049  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2050  "value_param");
2051  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2052  "type_param");
2053  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2054  "status");
2055  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2056  "time");
2057  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2058  "classname");
2059 }
2060 
2061 TEST_F(UnitTestRecordPropertyTest,
2062  AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2064  Test::RecordProperty("name", "1"),
2065  "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2066  " are reserved");
2067 }
2068 
2069 class UnitTestRecordPropertyTestEnvironment : public Environment {
2070  public:
2071  virtual void TearDown() {
2072  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2073  "tests");
2074  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2075  "failures");
2076  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2077  "disabled");
2078  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2079  "errors");
2080  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2081  "name");
2082  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2083  "timestamp");
2084  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2085  "time");
2086  ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2087  "random_seed");
2088  }
2089 };
2090 
2091 // This will test property recording outside of any test or test case.
2092 static Environment* record_property_env =
2093  AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2094 
2095 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2096 // of various arities. They do not attempt to be exhaustive. Rather,
2097 // view them as smoke tests that can be easily reviewed and verified.
2098 // A more complete set of tests for predicate assertions can be found
2099 // in gtest_pred_impl_unittest.cc.
2100 
2101 // First, some predicates and predicate-formatters needed by the tests.
2102 
2103 // Returns true iff the argument is an even number.
2104 bool IsEven(int n) {
2105  return (n % 2) == 0;
2106 }
2107 
2108 // A functor that returns true iff the argument is an even number.
2109 struct IsEvenFunctor {
2110  bool operator()(int n) { return IsEven(n); }
2111 };
2112 
2113 // A predicate-formatter function that asserts the argument is an even
2114 // number.
2115 AssertionResult AssertIsEven(const char* expr, int n) {
2116  if (IsEven(n)) {
2117  return AssertionSuccess();
2118  }
2119 
2120  Message msg;
2121  msg << expr << " evaluates to " << n << ", which is not even.";
2122  return AssertionFailure(msg);
2123 }
2124 
2125 // A predicate function that returns AssertionResult for use in
2126 // EXPECT/ASSERT_TRUE/FALSE.
2127 AssertionResult ResultIsEven(int n) {
2128  if (IsEven(n))
2129  return AssertionSuccess() << n << " is even";
2130  else
2131  return AssertionFailure() << n << " is odd";
2132 }
2133 
2134 // A predicate function that returns AssertionResult but gives no
2135 // explanation why it succeeds. Needed for testing that
2136 // EXPECT/ASSERT_FALSE handles such functions correctly.
2137 AssertionResult ResultIsEvenNoExplanation(int n) {
2138  if (IsEven(n))
2139  return AssertionSuccess();
2140  else
2141  return AssertionFailure() << n << " is odd";
2142 }
2143 
2144 // A predicate-formatter functor that asserts the argument is an even
2145 // number.
2146 struct AssertIsEvenFunctor {
2147  AssertionResult operator()(const char* expr, int n) {
2148  return AssertIsEven(expr, n);
2149  }
2150 };
2151 
2152 // Returns true iff the sum of the arguments is an even number.
2153 bool SumIsEven2(int n1, int n2) {
2154  return IsEven(n1 + n2);
2155 }
2156 
2157 // A functor that returns true iff the sum of the arguments is an even
2158 // number.
2159 struct SumIsEven3Functor {
2160  bool operator()(int n1, int n2, int n3) {
2161  return IsEven(n1 + n2 + n3);
2162  }
2163 };
2164 
2165 // A predicate-formatter function that asserts the sum of the
2166 // arguments is an even number.
2167 AssertionResult AssertSumIsEven4(
2168  const char* e1, const char* e2, const char* e3, const char* e4,
2169  int n1, int n2, int n3, int n4) {
2170  const int sum = n1 + n2 + n3 + n4;
2171  if (IsEven(sum)) {
2172  return AssertionSuccess();
2173  }
2174 
2175  Message msg;
2176  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2177  << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2178  << ") evaluates to " << sum << ", which is not even.";
2179  return AssertionFailure(msg);
2180 }
2181 
2182 // A predicate-formatter functor that asserts the sum of the arguments
2183 // is an even number.
2184 struct AssertSumIsEven5Functor {
2185  AssertionResult operator()(
2186  const char* e1, const char* e2, const char* e3, const char* e4,
2187  const char* e5, int n1, int n2, int n3, int n4, int n5) {
2188  const int sum = n1 + n2 + n3 + n4 + n5;
2189  if (IsEven(sum)) {
2190  return AssertionSuccess();
2191  }
2192 
2193  Message msg;
2194  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2195  << " ("
2196  << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2197  << ") evaluates to " << sum << ", which is not even.";
2198  return AssertionFailure(msg);
2199  }
2200 };
2201 
2202 
2203 // Tests unary predicate assertions.
2204 
2205 // Tests unary predicate assertions that don't use a custom formatter.
2206 TEST(Pred1Test, WithoutFormat) {
2207  // Success cases.
2208  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2209  ASSERT_PRED1(IsEven, 4);
2210 
2211  // Failure cases.
2212  EXPECT_NONFATAL_FAILURE({ // NOLINT
2213  EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2214  }, "This failure is expected.");
2215  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2216  "evaluates to false");
2217 }
2218 
2219 // Tests unary predicate assertions that use a custom formatter.
2220 TEST(Pred1Test, WithFormat) {
2221  // Success cases.
2222  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2223  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2224  << "This failure is UNEXPECTED!";
2225 
2226  // Failure cases.
2227  const int n = 5;
2228  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2229  "n evaluates to 5, which is not even.");
2230  EXPECT_FATAL_FAILURE({ // NOLINT
2231  ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2232  }, "This failure is expected.");
2233 }
2234 
2235 // Tests that unary predicate assertions evaluates their arguments
2236 // exactly once.
2237 TEST(Pred1Test, SingleEvaluationOnFailure) {
2238  // A success case.
2239  static int n = 0;
2240  EXPECT_PRED1(IsEven, n++);
2241  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2242 
2243  // A failure case.
2244  EXPECT_FATAL_FAILURE({ // NOLINT
2245  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2246  << "This failure is expected.";
2247  }, "This failure is expected.");
2248  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2249 }
2250 
2251 
2252 // Tests predicate assertions whose arity is >= 2.
2253 
2254 // Tests predicate assertions that don't use a custom formatter.
2255 TEST(PredTest, WithoutFormat) {
2256  // Success cases.
2257  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2258  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2259 
2260  // Failure cases.
2261  const int n1 = 1;
2262  const int n2 = 2;
2263  EXPECT_NONFATAL_FAILURE({ // NOLINT
2264  EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2265  }, "This failure is expected.");
2266  EXPECT_FATAL_FAILURE({ // NOLINT
2267  ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2268  }, "evaluates to false");
2269 }
2270 
2271 // Tests predicate assertions that use a custom formatter.
2272 TEST(PredTest, WithFormat) {
2273  // Success cases.
2274  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2275  "This failure is UNEXPECTED!";
2276  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2277 
2278  // Failure cases.
2279  const int n1 = 1;
2280  const int n2 = 2;
2281  const int n3 = 4;
2282  const int n4 = 6;
2283  EXPECT_NONFATAL_FAILURE({ // NOLINT
2284  EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2285  }, "evaluates to 13, which is not even.");
2286  EXPECT_FATAL_FAILURE({ // NOLINT
2287  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2288  << "This failure is expected.";
2289  }, "This failure is expected.");
2290 }
2291 
2292 // Tests that predicate assertions evaluates their arguments
2293 // exactly once.
2294 TEST(PredTest, SingleEvaluationOnFailure) {
2295  // A success case.
2296  int n1 = 0;
2297  int n2 = 0;
2298  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2299  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2300  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2301 
2302  // Another success case.
2303  n1 = n2 = 0;
2304  int n3 = 0;
2305  int n4 = 0;
2306  int n5 = 0;
2307  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2308  n1++, n2++, n3++, n4++, n5++)
2309  << "This failure is UNEXPECTED!";
2310  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2311  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2312  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2313  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2314  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2315 
2316  // A failure case.
2317  n1 = n2 = n3 = 0;
2318  EXPECT_NONFATAL_FAILURE({ // NOLINT
2319  EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2320  << "This failure is expected.";
2321  }, "This failure is expected.");
2322  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2323  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2324  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2325 
2326  // Another failure case.
2327  n1 = n2 = n3 = n4 = 0;
2328  EXPECT_NONFATAL_FAILURE({ // NOLINT
2329  EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2330  }, "evaluates to 1, which is not even.");
2331  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2332  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2333  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2334  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2335 }
2336 
2337 
2338 // Some helper functions for testing using overloaded/template
2339 // functions with ASSERT_PREDn and EXPECT_PREDn.
2340 
2341 bool IsPositive(double x) {
2342  return x > 0;
2343 }
2344 
2345 template <typename T>
2346 bool IsNegative(T x) {
2347  return x < 0;
2348 }
2349 
2350 template <typename T1, typename T2>
2351 bool GreaterThan(T1 x1, T2 x2) {
2352  return x1 > x2;
2353 }
2354 
2355 // Tests that overloaded functions can be used in *_PRED* as long as
2356 // their types are explicitly specified.
2357 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2358  // C++Builder requires C-style casts rather than static_cast.
2359  EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2360  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2361 }
2362 
2363 // Tests that template functions can be used in *_PRED* as long as
2364 // their types are explicitly specified.
2365 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2366  EXPECT_PRED1(IsNegative<int>, -5);
2367  // Makes sure that we can handle templates with more than one
2368  // parameter.
2369  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2370 }
2371 
2372 
2373 // Some helper functions for testing using overloaded/template
2374 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2375 
2376 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2377  return n > 0 ? AssertionSuccess() :
2378  AssertionFailure(Message() << "Failure");
2379 }
2380 
2381 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2382  return x > 0 ? AssertionSuccess() :
2383  AssertionFailure(Message() << "Failure");
2384 }
2385 
2386 template <typename T>
2387 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2388  return x < 0 ? AssertionSuccess() :
2389  AssertionFailure(Message() << "Failure");
2390 }
2391 
2392 template <typename T1, typename T2>
2393 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2394  const T1& x1, const T2& x2) {
2395  return x1 == x2 ? AssertionSuccess() :
2396  AssertionFailure(Message() << "Failure");
2397 }
2398 
2399 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2400 // without explicitly specifying their types.
2401 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2402  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2403  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2404 }
2405 
2406 // Tests that template functions can be used in *_PRED_FORMAT* without
2407 // explicitly specifying their types.
2408 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2409  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2410  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2411 }
2412 
2413 
2414 // Tests string assertions.
2415 
2416 // Tests ASSERT_STREQ with non-NULL arguments.
2417 TEST(StringAssertionTest, ASSERT_STREQ) {
2418  const char * const p1 = "good";
2419  ASSERT_STREQ(p1, p1);
2420 
2421  // Let p2 have the same content as p1, but be at a different address.
2422  const char p2[] = "good";
2423  ASSERT_STREQ(p1, p2);
2424 
2425  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2426  "Expected: \"bad\"");
2427 }
2428 
2429 // Tests ASSERT_STREQ with NULL arguments.
2430 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2431  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2432  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2433  "non-null");
2434 }
2435 
2436 // Tests ASSERT_STREQ with NULL arguments.
2437 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2438  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2439  "non-null");
2440 }
2441 
2442 // Tests ASSERT_STRNE.
2443 TEST(StringAssertionTest, ASSERT_STRNE) {
2444  ASSERT_STRNE("hi", "Hi");
2445  ASSERT_STRNE("Hi", NULL);
2446  ASSERT_STRNE(NULL, "Hi");
2447  ASSERT_STRNE("", NULL);
2448  ASSERT_STRNE(NULL, "");
2449  ASSERT_STRNE("", "Hi");
2450  ASSERT_STRNE("Hi", "");
2451  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2452  "\"Hi\" vs \"Hi\"");
2453 }
2454 
2455 // Tests ASSERT_STRCASEEQ.
2456 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2457  ASSERT_STRCASEEQ("hi", "Hi");
2458  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2459 
2460  ASSERT_STRCASEEQ("", "");
2462  "(ignoring case)");
2463 }
2464 
2465 // Tests ASSERT_STRCASENE.
2466 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2467  ASSERT_STRCASENE("hi1", "Hi2");
2468  ASSERT_STRCASENE("Hi", NULL);
2469  ASSERT_STRCASENE(NULL, "Hi");
2470  ASSERT_STRCASENE("", NULL);
2471  ASSERT_STRCASENE(NULL, "");
2472  ASSERT_STRCASENE("", "Hi");
2473  ASSERT_STRCASENE("Hi", "");
2475  "(ignoring case)");
2476 }
2477 
2478 // Tests *_STREQ on wide strings.
2479 TEST(StringAssertionTest, STREQ_Wide) {
2480  // NULL strings.
2481  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2482 
2483  // Empty strings.
2484  ASSERT_STREQ(L"", L"");
2485 
2486  // Non-null vs NULL.
2487  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2488  "non-null");
2489 
2490  // Equal strings.
2491  EXPECT_STREQ(L"Hi", L"Hi");
2492 
2493  // Unequal strings.
2494  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2495  "Abc");
2496 
2497  // Strings containing wide characters.
2498  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2499  "abc");
2500 
2501  // The streaming variation.
2502  EXPECT_NONFATAL_FAILURE({ // NOLINT
2503  EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2504  }, "Expected failure");
2505 }
2506 
2507 // Tests *_STRNE on wide strings.
2508 TEST(StringAssertionTest, STRNE_Wide) {
2509  // NULL strings.
2510  EXPECT_NONFATAL_FAILURE({ // NOLINT
2511  EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2512  }, "");
2513 
2514  // Empty strings.
2516  "L\"\"");
2517 
2518  // Non-null vs NULL.
2519  ASSERT_STRNE(L"non-null", NULL);
2520 
2521  // Equal strings.
2522  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2523  "L\"Hi\"");
2524 
2525  // Unequal strings.
2526  EXPECT_STRNE(L"abc", L"Abc");
2527 
2528  // Strings containing wide characters.
2529  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2530  "abc");
2531 
2532  // The streaming variation.
2533  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2534 }
2535 
2536 // Tests for ::testing::IsSubstring().
2537 
2538 // Tests that IsSubstring() returns the correct result when the input
2539 // argument type is const char*.
2540 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2541  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2542  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2543  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2544 
2545  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2546  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2547 }
2548 
2549 // Tests that IsSubstring() returns the correct result when the input
2550 // argument type is const wchar_t*.
2551 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2552  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2553  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2554  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2555 
2556  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2557  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2558 }
2559 
2560 // Tests that IsSubstring() generates the correct message when the input
2561 // argument type is const char*.
2562 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2563  EXPECT_STREQ("Value of: needle_expr\n"
2564  " Actual: \"needle\"\n"
2565  "Expected: a substring of haystack_expr\n"
2566  "Which is: \"haystack\"",
2567  IsSubstring("needle_expr", "haystack_expr",
2568  "needle", "haystack").failure_message());
2569 }
2570 
2571 // Tests that IsSubstring returns the correct result when the input
2572 // argument type is ::std::string.
2573 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2574  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2575  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2576 }
2577 
2578 #if GTEST_HAS_STD_WSTRING
2579 // Tests that IsSubstring returns the correct result when the input
2580 // argument type is ::std::wstring.
2581 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2582  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2583  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2584 }
2585 
2586 // Tests that IsSubstring() generates the correct message when the input
2587 // argument type is ::std::wstring.
2588 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2589  EXPECT_STREQ("Value of: needle_expr\n"
2590  " Actual: L\"needle\"\n"
2591  "Expected: a substring of haystack_expr\n"
2592  "Which is: L\"haystack\"",
2593  IsSubstring(
2594  "needle_expr", "haystack_expr",
2595  ::std::wstring(L"needle"), L"haystack").failure_message());
2596 }
2597 
2598 #endif // GTEST_HAS_STD_WSTRING
2599 
2600 // Tests for ::testing::IsNotSubstring().
2601 
2602 // Tests that IsNotSubstring() returns the correct result when the input
2603 // argument type is const char*.
2604 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2605  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2606  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2607 }
2608 
2609 // Tests that IsNotSubstring() returns the correct result when the input
2610 // argument type is const wchar_t*.
2611 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2612  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2613  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2614 }
2615 
2616 // Tests that IsNotSubstring() generates the correct message when the input
2617 // argument type is const wchar_t*.
2618 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2619  EXPECT_STREQ("Value of: needle_expr\n"
2620  " Actual: L\"needle\"\n"
2621  "Expected: not a substring of haystack_expr\n"
2622  "Which is: L\"two needles\"",
2624  "needle_expr", "haystack_expr",
2625  L"needle", L"two needles").failure_message());
2626 }
2627 
2628 // Tests that IsNotSubstring returns the correct result when the input
2629 // argument type is ::std::string.
2630 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2631  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2632  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2633 }
2634 
2635 // Tests that IsNotSubstring() generates the correct message when the input
2636 // argument type is ::std::string.
2637 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2638  EXPECT_STREQ("Value of: needle_expr\n"
2639  " Actual: \"needle\"\n"
2640  "Expected: not a substring of haystack_expr\n"
2641  "Which is: \"two needles\"",
2643  "needle_expr", "haystack_expr",
2644  ::std::string("needle"), "two needles").failure_message());
2645 }
2646 
2647 #if GTEST_HAS_STD_WSTRING
2648 
2649 // Tests that IsNotSubstring returns the correct result when the input
2650 // argument type is ::std::wstring.
2651 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2652  EXPECT_FALSE(
2653  IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2654  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2655 }
2656 
2657 #endif // GTEST_HAS_STD_WSTRING
2658 
2659 // Tests floating-point assertions.
2660 
2661 template <typename RawType>
2662 class FloatingPointTest : public Test {
2663  protected:
2664  // Pre-calculated numbers to be used by the tests.
2665  struct TestValues {
2666  RawType close_to_positive_zero;
2667  RawType close_to_negative_zero;
2668  RawType further_from_negative_zero;
2669 
2670  RawType close_to_one;
2671  RawType further_from_one;
2672 
2673  RawType infinity;
2674  RawType close_to_infinity;
2675  RawType further_from_infinity;
2676 
2677  RawType nan1;
2678  RawType nan2;
2679  };
2680 
2681  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2682  typedef typename Floating::Bits Bits;
2683 
2684  virtual void SetUp() {
2685  const size_t max_ulps = Floating::kMaxUlps;
2686 
2687  // The bits that represent 0.0.
2688  const Bits zero_bits = Floating(0).bits();
2689 
2690  // Makes some numbers close to 0.0.
2691  values_.close_to_positive_zero = Floating::ReinterpretBits(
2692  zero_bits + max_ulps/2);
2693  values_.close_to_negative_zero = -Floating::ReinterpretBits(
2694  zero_bits + max_ulps - max_ulps/2);
2695  values_.further_from_negative_zero = -Floating::ReinterpretBits(
2696  zero_bits + max_ulps + 1 - max_ulps/2);
2697 
2698  // The bits that represent 1.0.
2699  const Bits one_bits = Floating(1).bits();
2700 
2701  // Makes some numbers close to 1.0.
2702  values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2703  values_.further_from_one = Floating::ReinterpretBits(
2704  one_bits + max_ulps + 1);
2705 
2706  // +infinity.
2707  values_.infinity = Floating::Infinity();
2708 
2709  // The bits that represent +infinity.
2710  const Bits infinity_bits = Floating(values_.infinity).bits();
2711 
2712  // Makes some numbers close to infinity.
2713  values_.close_to_infinity = Floating::ReinterpretBits(
2714  infinity_bits - max_ulps);
2715  values_.further_from_infinity = Floating::ReinterpretBits(
2716  infinity_bits - max_ulps - 1);
2717 
2718  // Makes some NAN's. Sets the most significant bit of the fraction so that
2719  // our NaN's are quiet; trying to process a signaling NaN would raise an
2720  // exception if our environment enables floating point exceptions.
2721  values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2722  | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2723  values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2724  | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2725  }
2726 
2727  void TestSize() {
2728  EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2729  }
2730 
2731  static TestValues values_;
2732 };
2733 
2734 template <typename RawType>
2735 typename FloatingPointTest<RawType>::TestValues
2736  FloatingPointTest<RawType>::values_;
2737 
2738 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2739 typedef FloatingPointTest<float> FloatTest;
2740 
2741 // Tests that the size of Float::Bits matches the size of float.
2742 TEST_F(FloatTest, Size) {
2743  TestSize();
2744 }
2745 
2746 // Tests comparing with +0 and -0.
2747 TEST_F(FloatTest, Zeros) {
2748  EXPECT_FLOAT_EQ(0.0, -0.0);
2750  "1.0");
2752  "1.5");
2753 }
2754 
2755 // Tests comparing numbers close to 0.
2756 //
2757 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2758 // overflow occurs when comparing numbers whose absolute value is very
2759 // small.
2760 TEST_F(FloatTest, AlmostZeros) {
2761  // In C++Builder, names within local classes (such as used by
2762  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2763  // scoping class. Use a static local alias as a workaround.
2764  // We use the assignment syntax since some compilers, like Sun Studio,
2765  // don't allow initializing references using construction syntax
2766  // (parentheses).
2767  static const FloatTest::TestValues& v = this->values_;
2768 
2769  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2770  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2771  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2772 
2773  EXPECT_FATAL_FAILURE({ // NOLINT
2774  ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2775  v.further_from_negative_zero);
2776  }, "v.further_from_negative_zero");
2777 }
2778 
2779 // Tests comparing numbers close to each other.
2780 TEST_F(FloatTest, SmallDiff) {
2781  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2782  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2783  "values_.further_from_one");
2784 }
2785 
2786 // Tests comparing numbers far apart.
2787 TEST_F(FloatTest, LargeDiff) {
2789  "3.0");
2790 }
2791 
2792 // Tests comparing with infinity.
2793 //
2794 // This ensures that no overflow occurs when comparing numbers whose
2795 // absolute value is very large.
2796 TEST_F(FloatTest, Infinity) {
2797  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2798  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2799 #if !GTEST_OS_SYMBIAN
2800  // Nokia's STLport crashes if we try to output infinity or NaN.
2801  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2802  "-values_.infinity");
2803 
2804  // This is interesting as the representations of infinity and nan1
2805  // are only 1 DLP apart.
2806  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2807  "values_.nan1");
2808 #endif // !GTEST_OS_SYMBIAN
2809 }
2810 
2811 // Tests that comparing with NAN always returns false.
2812 TEST_F(FloatTest, NaN) {
2813 #if !GTEST_OS_SYMBIAN
2814 // Nokia's STLport crashes if we try to output infinity or NaN.
2815 
2816  // In C++Builder, names within local classes (such as used by
2817  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2818  // scoping class. Use a static local alias as a workaround.
2819  // We use the assignment syntax since some compilers, like Sun Studio,
2820  // don't allow initializing references using construction syntax
2821  // (parentheses).
2822  static const FloatTest::TestValues& v = this->values_;
2823 
2824  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2825  "v.nan1");
2826  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2827  "v.nan2");
2829  "v.nan1");
2830 
2831  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2832  "v.infinity");
2833 #endif // !GTEST_OS_SYMBIAN
2834 }
2835 
2836 // Tests that *_FLOAT_EQ are reflexive.
2837 TEST_F(FloatTest, Reflexive) {
2838  EXPECT_FLOAT_EQ(0.0, 0.0);
2839  EXPECT_FLOAT_EQ(1.0, 1.0);
2840  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2841 }
2842 
2843 // Tests that *_FLOAT_EQ are commutative.
2844 TEST_F(FloatTest, Commutative) {
2845  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2846  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2847 
2848  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2849  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2850  "1.0");
2851 }
2852 
2853 // Tests EXPECT_NEAR.
2854 TEST_F(FloatTest, EXPECT_NEAR) {
2855  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2856  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2857  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2858  "The difference between 1.0f and 1.5f is 0.5, "
2859  "which exceeds 0.25f");
2860  // To work around a bug in gcc 2.95.0, there is intentionally no
2861  // space after the first comma in the previous line.
2862 }
2863 
2864 // Tests ASSERT_NEAR.
2865 TEST_F(FloatTest, ASSERT_NEAR) {
2866  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2867  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2868  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2869  "The difference between 1.0f and 1.5f is 0.5, "
2870  "which exceeds 0.25f");
2871  // To work around a bug in gcc 2.95.0, there is intentionally no
2872  // space after the first comma in the previous line.
2873 }
2874 
2875 // Tests the cases where FloatLE() should succeed.
2876 TEST_F(FloatTest, FloatLESucceeds) {
2877  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2878  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2879 
2880  // or when val1 is greater than, but almost equals to, val2.
2881  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2882 }
2883 
2884 // Tests the cases where FloatLE() should fail.
2885 TEST_F(FloatTest, FloatLEFails) {
2886  // When val1 is greater than val2 by a large margin,
2888  "(2.0f) <= (1.0f)");
2889 
2890  // or by a small yet non-negligible margin,
2891  EXPECT_NONFATAL_FAILURE({ // NOLINT
2892  EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2893  }, "(values_.further_from_one) <= (1.0f)");
2894 
2895 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2896  // Nokia's STLport crashes if we try to output infinity or NaN.
2897  // C++Builder gives bad results for ordered comparisons involving NaNs
2898  // due to compiler bugs.
2899  EXPECT_NONFATAL_FAILURE({ // NOLINT
2900  EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2901  }, "(values_.nan1) <= (values_.infinity)");
2902  EXPECT_NONFATAL_FAILURE({ // NOLINT
2903  EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2904  }, "(-values_.infinity) <= (values_.nan1)");
2905  EXPECT_FATAL_FAILURE({ // NOLINT
2906  ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2907  }, "(values_.nan1) <= (values_.nan1)");
2908 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2909 }
2910 
2911 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2912 typedef FloatingPointTest<double> DoubleTest;
2913 
2914 // Tests that the size of Double::Bits matches the size of double.
2915 TEST_F(DoubleTest, Size) {
2916  TestSize();
2917 }
2918 
2919 // Tests comparing with +0 and -0.
2920 TEST_F(DoubleTest, Zeros) {
2921  EXPECT_DOUBLE_EQ(0.0, -0.0);
2923  "1.0");
2925  "1.0");
2926 }
2927 
2928 // Tests comparing numbers close to 0.
2929 //
2930 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2931 // overflow occurs when comparing numbers whose absolute value is very
2932 // small.
2933 TEST_F(DoubleTest, AlmostZeros) {
2934  // In C++Builder, names within local classes (such as used by
2935  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2936  // scoping class. Use a static local alias as a workaround.
2937  // We use the assignment syntax since some compilers, like Sun Studio,
2938  // don't allow initializing references using construction syntax
2939  // (parentheses).
2940  static const DoubleTest::TestValues& v = this->values_;
2941 
2942  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2943  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2944  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2945 
2946  EXPECT_FATAL_FAILURE({ // NOLINT
2947  ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2948  v.further_from_negative_zero);
2949  }, "v.further_from_negative_zero");
2950 }
2951 
2952 // Tests comparing numbers close to each other.
2953 TEST_F(DoubleTest, SmallDiff) {
2954  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2955  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2956  "values_.further_from_one");
2957 }
2958 
2959 // Tests comparing numbers far apart.
2960 TEST_F(DoubleTest, LargeDiff) {
2962  "3.0");
2963 }
2964 
2965 // Tests comparing with infinity.
2966 //
2967 // This ensures that no overflow occurs when comparing numbers whose
2968 // absolute value is very large.
2969 TEST_F(DoubleTest, Infinity) {
2970  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2971  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2972 #if !GTEST_OS_SYMBIAN
2973  // Nokia's STLport crashes if we try to output infinity or NaN.
2974  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2975  "-values_.infinity");
2976 
2977  // This is interesting as the representations of infinity_ and nan1_
2978  // are only 1 DLP apart.
2979  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2980  "values_.nan1");
2981 #endif // !GTEST_OS_SYMBIAN
2982 }
2983 
2984 // Tests that comparing with NAN always returns false.
2985 TEST_F(DoubleTest, NaN) {
2986 #if !GTEST_OS_SYMBIAN
2987  // In C++Builder, names within local classes (such as used by
2988  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2989  // scoping class. Use a static local alias as a workaround.
2990  // We use the assignment syntax since some compilers, like Sun Studio,
2991  // don't allow initializing references using construction syntax
2992  // (parentheses).
2993  static const DoubleTest::TestValues& v = this->values_;
2994 
2995  // Nokia's STLport crashes if we try to output infinity or NaN.
2996  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
2997  "v.nan1");
2998  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
2999  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3000  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3001  "v.infinity");
3002 #endif // !GTEST_OS_SYMBIAN
3003 }
3004 
3005 // Tests that *_DOUBLE_EQ are reflexive.
3006 TEST_F(DoubleTest, Reflexive) {
3007  EXPECT_DOUBLE_EQ(0.0, 0.0);
3008  EXPECT_DOUBLE_EQ(1.0, 1.0);
3009 #if !GTEST_OS_SYMBIAN
3010  // Nokia's STLport crashes if we try to output infinity or NaN.
3011  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3012 #endif // !GTEST_OS_SYMBIAN
3013 }
3014 
3015 // Tests that *_DOUBLE_EQ are commutative.
3016 TEST_F(DoubleTest, Commutative) {
3017  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3018  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3019 
3020  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3021  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3022  "1.0");
3023 }
3024 
3025 // Tests EXPECT_NEAR.
3026 TEST_F(DoubleTest, EXPECT_NEAR) {
3027  EXPECT_NEAR(-1.0, -1.1, 0.2);
3028  EXPECT_NEAR(2.0, 3.0, 1.0);
3029  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3030  "The difference between 1.0 and 1.5 is 0.5, "
3031  "which exceeds 0.25");
3032  // To work around a bug in gcc 2.95.0, there is intentionally no
3033  // space after the first comma in the previous statement.
3034 }
3035 
3036 // Tests ASSERT_NEAR.
3037 TEST_F(DoubleTest, ASSERT_NEAR) {
3038  ASSERT_NEAR(-1.0, -1.1, 0.2);
3039  ASSERT_NEAR(2.0, 3.0, 1.0);
3040  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3041  "The difference between 1.0 and 1.5 is 0.5, "
3042  "which exceeds 0.25");
3043  // To work around a bug in gcc 2.95.0, there is intentionally no
3044  // space after the first comma in the previous statement.
3045 }
3046 
3047 // Tests the cases where DoubleLE() should succeed.
3048 TEST_F(DoubleTest, DoubleLESucceeds) {
3049  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3050  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3051 
3052  // or when val1 is greater than, but almost equals to, val2.
3053  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3054 }
3055 
3056 // Tests the cases where DoubleLE() should fail.
3057 TEST_F(DoubleTest, DoubleLEFails) {
3058  // When val1 is greater than val2 by a large margin,
3060  "(2.0) <= (1.0)");
3061 
3062  // or by a small yet non-negligible margin,
3063  EXPECT_NONFATAL_FAILURE({ // NOLINT
3064  EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3065  }, "(values_.further_from_one) <= (1.0)");
3066 
3067 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3068  // Nokia's STLport crashes if we try to output infinity or NaN.
3069  // C++Builder gives bad results for ordered comparisons involving NaNs
3070  // due to compiler bugs.
3071  EXPECT_NONFATAL_FAILURE({ // NOLINT
3072  EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3073  }, "(values_.nan1) <= (values_.infinity)");
3074  EXPECT_NONFATAL_FAILURE({ // NOLINT
3075  EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3076  }, " (-values_.infinity) <= (values_.nan1)");
3077  EXPECT_FATAL_FAILURE({ // NOLINT
3078  ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3079  }, "(values_.nan1) <= (values_.nan1)");
3080 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3081 }
3082 
3083 
3084 // Verifies that a test or test case whose name starts with DISABLED_ is
3085 // not run.
3086 
3087 // A test whose name starts with DISABLED_.
3088 // Should not run.
3089 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3090  FAIL() << "Unexpected failure: Disabled test should not be run.";
3091 }
3092 
3093 // A test whose name does not start with DISABLED_.
3094 // Should run.
3095 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3096  EXPECT_EQ(1, 1);
3097 }
3098 
3099 // A test case whose name starts with DISABLED_.
3100 // Should not run.
3101 TEST(DISABLED_TestCase, TestShouldNotRun) {
3102  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3103 }
3104 
3105 // A test case and test whose names start with DISABLED_.
3106 // Should not run.
3107 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3108  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3109 }
3110 
3111 // Check that when all tests in a test case are disabled, SetupTestCase() and
3112 // TearDownTestCase() are not called.
3113 class DisabledTestsTest : public Test {
3114  protected:
3115  static void SetUpTestCase() {
3116  FAIL() << "Unexpected failure: All tests disabled in test case. "
3117  "SetupTestCase() should not be called.";
3118  }
3119 
3120  static void TearDownTestCase() {
3121  FAIL() << "Unexpected failure: All tests disabled in test case. "
3122  "TearDownTestCase() should not be called.";
3123  }
3124 };
3125 
3126 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3127  FAIL() << "Unexpected failure: Disabled test should not be run.";
3128 }
3129 
3130 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3131  FAIL() << "Unexpected failure: Disabled test should not be run.";
3132 }
3133 
3134 // Tests that disabled typed tests aren't run.
3135 
3136 #if GTEST_HAS_TYPED_TEST
3137 
3138 template <typename T>
3139 class TypedTest : public Test {
3140 };
3141 
3142 typedef testing::Types<int, double> NumericTypes;
3143 TYPED_TEST_CASE(TypedTest, NumericTypes);
3144 
3145 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3146  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3147 }
3148 
3149 template <typename T>
3150 class DISABLED_TypedTest : public Test {
3151 };
3152 
3153 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3154 
3155 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3156  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3157 }
3158 
3159 #endif // GTEST_HAS_TYPED_TEST
3160 
3161 // Tests that disabled type-parameterized tests aren't run.
3162 
3163 #if GTEST_HAS_TYPED_TEST_P
3164 
3165 template <typename T>
3166 class TypedTestP : public Test {
3167 };
3168 
3169 TYPED_TEST_CASE_P(TypedTestP);
3170 
3171 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3172  FAIL() << "Unexpected failure: "
3173  << "Disabled type-parameterized test should not run.";
3174 }
3175 
3176 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3177 
3178 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3179 
3180 template <typename T>
3181 class DISABLED_TypedTestP : public Test {
3182 };
3183 
3184 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3185 
3186 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3187  FAIL() << "Unexpected failure: "
3188  << "Disabled type-parameterized test should not run.";
3189 }
3190 
3191 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3192 
3193 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3194 
3195 #endif // GTEST_HAS_TYPED_TEST_P
3196 
3197 // Tests that assertion macros evaluate their arguments exactly once.
3198 
3199 class SingleEvaluationTest : public Test {
3200  public: // Must be public and not protected due to a bug in g++ 3.4.2.
3201  // This helper function is needed by the FailedASSERT_STREQ test
3202  // below. It's public to work around C++Builder's bug with scoping local
3203  // classes.
3204  static void CompareAndIncrementCharPtrs() {
3205  ASSERT_STREQ(p1_++, p2_++);
3206  }
3207 
3208  // This helper function is needed by the FailedASSERT_NE test below. It's
3209  // public to work around C++Builder's bug with scoping local classes.
3210  static void CompareAndIncrementInts() {
3211  ASSERT_NE(a_++, b_++);
3212  }
3213 
3214  protected:
3215  SingleEvaluationTest() {
3216  p1_ = s1_;
3217  p2_ = s2_;
3218  a_ = 0;
3219  b_ = 0;
3220  }
3221 
3222  static const char* const s1_;
3223  static const char* const s2_;
3224  static const char* p1_;
3225  static const char* p2_;
3226 
3227  static int a_;
3228  static int b_;
3229 };
3230 
3231 const char* const SingleEvaluationTest::s1_ = "01234";
3232 const char* const SingleEvaluationTest::s2_ = "abcde";
3233 const char* SingleEvaluationTest::p1_;
3234 const char* SingleEvaluationTest::p2_;
3235 int SingleEvaluationTest::a_;
3236 int SingleEvaluationTest::b_;
3237 
3238 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3239 // exactly once.
3240 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3241  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3242  "p2_++");
3243  EXPECT_EQ(s1_ + 1, p1_);
3244  EXPECT_EQ(s2_ + 1, p2_);
3245 }
3246 
3247 // Tests that string assertion arguments are evaluated exactly once.
3248 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3249  // successful EXPECT_STRNE
3250  EXPECT_STRNE(p1_++, p2_++);
3251  EXPECT_EQ(s1_ + 1, p1_);
3252  EXPECT_EQ(s2_ + 1, p2_);
3253 
3254  // failed EXPECT_STRCASEEQ
3256  "ignoring case");
3257  EXPECT_EQ(s1_ + 2, p1_);
3258  EXPECT_EQ(s2_ + 2, p2_);
3259 }
3260 
3261 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3262 // once.
3263 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3264  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3265  "(a_++) != (b_++)");
3266  EXPECT_EQ(1, a_);
3267  EXPECT_EQ(1, b_);
3268 }
3269 
3270 // Tests that assertion arguments are evaluated exactly once.
3271 TEST_F(SingleEvaluationTest, OtherCases) {
3272  // successful EXPECT_TRUE
3273  EXPECT_TRUE(0 == a_++); // NOLINT
3274  EXPECT_EQ(1, a_);
3275 
3276  // failed EXPECT_TRUE
3277  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3278  EXPECT_EQ(2, a_);
3279 
3280  // successful EXPECT_GT
3281  EXPECT_GT(a_++, b_++);
3282  EXPECT_EQ(3, a_);
3283  EXPECT_EQ(1, b_);
3284 
3285  // failed EXPECT_LT
3286  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3287  EXPECT_EQ(4, a_);
3288  EXPECT_EQ(2, b_);
3289 
3290  // successful ASSERT_TRUE
3291  ASSERT_TRUE(0 < a_++); // NOLINT
3292  EXPECT_EQ(5, a_);
3293 
3294  // successful ASSERT_GT
3295  ASSERT_GT(a_++, b_++);
3296  EXPECT_EQ(6, a_);
3297  EXPECT_EQ(3, b_);
3298 }
3299 
3300 #if GTEST_HAS_EXCEPTIONS
3301 
3302 void ThrowAnInteger() {
3303  throw 1;
3304 }
3305 
3306 // Tests that assertion arguments are evaluated exactly once.
3307 TEST_F(SingleEvaluationTest, ExceptionTests) {
3308  // successful EXPECT_THROW
3309  EXPECT_THROW({ // NOLINT
3310  a_++;
3311  ThrowAnInteger();
3312  }, int);
3313  EXPECT_EQ(1, a_);
3314 
3315  // failed EXPECT_THROW, throws different
3317  a_++;
3318  ThrowAnInteger();
3319  }, bool), "throws a different type");
3320  EXPECT_EQ(2, a_);
3321 
3322  // failed EXPECT_THROW, throws nothing
3323  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3324  EXPECT_EQ(3, a_);
3325 
3326  // successful EXPECT_NO_THROW
3327  EXPECT_NO_THROW(a_++);
3328  EXPECT_EQ(4, a_);
3329 
3330  // failed EXPECT_NO_THROW
3332  a_++;
3333  ThrowAnInteger();
3334  }), "it throws");
3335  EXPECT_EQ(5, a_);
3336 
3337  // successful EXPECT_ANY_THROW
3338  EXPECT_ANY_THROW({ // NOLINT
3339  a_++;
3340  ThrowAnInteger();
3341  });
3342  EXPECT_EQ(6, a_);
3343 
3344  // failed EXPECT_ANY_THROW
3345  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3346  EXPECT_EQ(7, a_);
3347 }
3348 
3349 #endif // GTEST_HAS_EXCEPTIONS
3350 
3351 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3352 class NoFatalFailureTest : public Test {
3353  protected:
3354  void Succeeds() {}
3355  void FailsNonFatal() {
3356  ADD_FAILURE() << "some non-fatal failure";
3357  }
3358  void Fails() {
3359  FAIL() << "some fatal failure";
3360  }
3361 
3362  void DoAssertNoFatalFailureOnFails() {
3363  ASSERT_NO_FATAL_FAILURE(Fails());
3364  ADD_FAILURE() << "shold not reach here.";
3365  }
3366 
3367  void DoExpectNoFatalFailureOnFails() {
3368  EXPECT_NO_FATAL_FAILURE(Fails());
3369  ADD_FAILURE() << "other failure";
3370  }
3371 };
3372 
3373 TEST_F(NoFatalFailureTest, NoFailure) {
3374  EXPECT_NO_FATAL_FAILURE(Succeeds());
3375  ASSERT_NO_FATAL_FAILURE(Succeeds());
3376 }
3377 
3378 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3380  EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3381  "some non-fatal failure");
3383  ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3384  "some non-fatal failure");
3385 }
3386 
3387 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3388  TestPartResultArray gtest_failures;
3389  {
3390  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3391  DoAssertNoFatalFailureOnFails();
3392  }
3393  ASSERT_EQ(2, gtest_failures.size());
3395  gtest_failures.GetTestPartResult(0).type());
3397  gtest_failures.GetTestPartResult(1).type());
3398  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3399  gtest_failures.GetTestPartResult(0).message());
3401  gtest_failures.GetTestPartResult(1).message());
3402 }
3403 
3404 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3405  TestPartResultArray gtest_failures;
3406  {
3407  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3408  DoExpectNoFatalFailureOnFails();
3409  }
3410  ASSERT_EQ(3, gtest_failures.size());
3412  gtest_failures.GetTestPartResult(0).type());
3414  gtest_failures.GetTestPartResult(1).type());
3416  gtest_failures.GetTestPartResult(2).type());
3417  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3418  gtest_failures.GetTestPartResult(0).message());
3420  gtest_failures.GetTestPartResult(1).message());
3421  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3422  gtest_failures.GetTestPartResult(2).message());
3423 }
3424 
3425 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3426  TestPartResultArray gtest_failures;
3427  {
3428  ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3429  EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3430  }
3431  ASSERT_EQ(2, gtest_failures.size());
3433  gtest_failures.GetTestPartResult(0).type());
3435  gtest_failures.GetTestPartResult(1).type());
3437  gtest_failures.GetTestPartResult(0).message());
3439  gtest_failures.GetTestPartResult(1).message());
3440 }
3441 
3442 // Tests non-string assertions.
3443 
3444 // Tests EqFailure(), used for implementing *EQ* assertions.
3445 TEST(AssertionTest, EqFailure) {
3446  const std::string foo_val("5"), bar_val("6");
3447  const std::string msg1(
3448  EqFailure("foo", "bar", foo_val, bar_val, false)
3449  .failure_message());
3450  EXPECT_STREQ(
3451  "Value of: bar\n"
3452  " Actual: 6\n"
3453  "Expected: foo\n"
3454  "Which is: 5",
3455  msg1.c_str());
3456 
3457  const std::string msg2(
3458  EqFailure("foo", "6", foo_val, bar_val, false)
3459  .failure_message());
3460  EXPECT_STREQ(
3461  "Value of: 6\n"
3462  "Expected: foo\n"
3463  "Which is: 5",
3464  msg2.c_str());
3465 
3466  const std::string msg3(
3467  EqFailure("5", "bar", foo_val, bar_val, false)
3468  .failure_message());
3469  EXPECT_STREQ(
3470  "Value of: bar\n"
3471  " Actual: 6\n"
3472  "Expected: 5",
3473  msg3.c_str());
3474 
3475  const std::string msg4(
3476  EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3477  EXPECT_STREQ(
3478  "Value of: 6\n"
3479  "Expected: 5",
3480  msg4.c_str());
3481 
3482  const std::string msg5(
3483  EqFailure("foo", "bar",
3484  std::string("\"x\""), std::string("\"y\""),
3485  true).failure_message());
3486  EXPECT_STREQ(
3487  "Value of: bar\n"
3488  " Actual: \"y\"\n"
3489  "Expected: foo (ignoring case)\n"
3490  "Which is: \"x\"",
3491  msg5.c_str());
3492 }
3493 
3494 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
3495 TEST(AssertionTest, AppendUserMessage) {
3496  const std::string foo("foo");
3497 
3498  Message msg;
3499  EXPECT_STREQ("foo",
3500  AppendUserMessage(foo, msg).c_str());
3501 
3502  msg << "bar";
3503  EXPECT_STREQ("foo\nbar",
3504  AppendUserMessage(foo, msg).c_str());
3505 }
3506 
3507 #ifdef __BORLANDC__
3508 // Silences warnings: "Condition is always true", "Unreachable code"
3509 # pragma option push -w-ccc -w-rch
3510 #endif
3511 
3512 // Tests ASSERT_TRUE.
3513 TEST(AssertionTest, ASSERT_TRUE) {
3514  ASSERT_TRUE(2 > 1); // NOLINT
3516  "2 < 1");
3517 }
3518 
3519 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3520 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3521  ASSERT_TRUE(ResultIsEven(2));
3522 #ifndef __BORLANDC__
3523  // ICE's in C++Builder.
3524  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3525  "Value of: ResultIsEven(3)\n"
3526  " Actual: false (3 is odd)\n"
3527  "Expected: true");
3528 #endif
3529  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3530  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3531  "Value of: ResultIsEvenNoExplanation(3)\n"
3532  " Actual: false (3 is odd)\n"
3533  "Expected: true");
3534 }
3535 
3536 // Tests ASSERT_FALSE.
3537 TEST(AssertionTest, ASSERT_FALSE) {
3538  ASSERT_FALSE(2 < 1); // NOLINT
3540  "Value of: 2 > 1\n"
3541  " Actual: true\n"
3542  "Expected: false");
3543 }
3544 
3545 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3546 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3547  ASSERT_FALSE(ResultIsEven(3));
3548 #ifndef __BORLANDC__
3549  // ICE's in C++Builder.
3550  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3551  "Value of: ResultIsEven(2)\n"
3552  " Actual: true (2 is even)\n"
3553  "Expected: false");
3554 #endif
3555  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3556  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3557  "Value of: ResultIsEvenNoExplanation(2)\n"
3558  " Actual: true\n"
3559  "Expected: false");
3560 }
3561 
3562 #ifdef __BORLANDC__
3563 // Restores warnings after previous "#pragma option push" supressed them
3564 # pragma option pop
3565 #endif
3566 
3567 // Tests using ASSERT_EQ on double values. The purpose is to make
3568 // sure that the specialization we did for integer and anonymous enums
3569 // isn't used for double arguments.
3570 TEST(ExpectTest, ASSERT_EQ_Double) {
3571  // A success.
3572  ASSERT_EQ(5.6, 5.6);
3573 
3574  // A failure.
3575  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3576  "5.1");
3577 }
3578 
3579 // Tests ASSERT_EQ.
3580 TEST(AssertionTest, ASSERT_EQ) {
3581  ASSERT_EQ(5, 2 + 3);
3583  "Value of: 2*3\n"
3584  " Actual: 6\n"
3585  "Expected: 5");
3586 }
3587 
3588 // Tests ASSERT_EQ(NULL, pointer).
3589 #if GTEST_CAN_COMPARE_NULL
3590 TEST(AssertionTest, ASSERT_EQ_NULL) {
3591  // A success.
3592  const char* p = NULL;
3593  // Some older GCC versions may issue a spurious waring in this or the next
3594  // assertion statement. This warning should not be suppressed with
3595  // static_cast since the test verifies the ability to use bare NULL as the
3596  // expected parameter to the macro.
3597  ASSERT_EQ(NULL, p);
3598 
3599  // A failure.
3600  static int n = 0;
3601  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3602  "Value of: &n\n");
3603 }
3604 #endif // GTEST_CAN_COMPARE_NULL
3605 
3606 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3607 // treated as a null pointer by the compiler, we need to make sure
3608 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3609 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3610 TEST(ExpectTest, ASSERT_EQ_0) {
3611  int n = 0;
3612 
3613  // A success.
3614  ASSERT_EQ(0, n);
3615 
3616  // A failure.
3618  "Expected: 0");
3619 }
3620 
3621 // Tests ASSERT_NE.
3622 TEST(AssertionTest, ASSERT_NE) {
3623  ASSERT_NE(6, 7);
3624  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3625  "Expected: ('a') != ('a'), "
3626  "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3627 }
3628 
3629 // Tests ASSERT_LE.
3630 TEST(AssertionTest, ASSERT_LE) {
3631  ASSERT_LE(2, 3);
3632  ASSERT_LE(2, 2);
3634  "Expected: (2) <= (0), actual: 2 vs 0");
3635 }
3636 
3637 // Tests ASSERT_LT.
3638 TEST(AssertionTest, ASSERT_LT) {
3639  ASSERT_LT(2, 3);
3641  "Expected: (2) < (2), actual: 2 vs 2");
3642 }
3643 
3644 // Tests ASSERT_GE.
3645 TEST(AssertionTest, ASSERT_GE) {
3646  ASSERT_GE(2, 1);
3647  ASSERT_GE(2, 2);
3649  "Expected: (2) >= (3), actual: 2 vs 3");
3650 }
3651 
3652 // Tests ASSERT_GT.
3653 TEST(AssertionTest, ASSERT_GT) {
3654  ASSERT_GT(2, 1);
3656  "Expected: (2) > (2), actual: 2 vs 2");
3657 }
3658 
3659 #if GTEST_HAS_EXCEPTIONS
3660 
3661 void ThrowNothing() {}
3662 
3663 // Tests ASSERT_THROW.
3664 TEST(AssertionTest, ASSERT_THROW) {
3665  ASSERT_THROW(ThrowAnInteger(), int);
3666 
3667 # ifndef __BORLANDC__
3668 
3669  // ICE's in C++Builder 2007 and 2009.
3671  ASSERT_THROW(ThrowAnInteger(), bool),
3672  "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3673  " Actual: it throws a different type.");
3674 # endif
3675 
3677  ASSERT_THROW(ThrowNothing(), bool),
3678  "Expected: ThrowNothing() throws an exception of type bool.\n"
3679  " Actual: it throws nothing.");
3680 }
3681 
3682 // Tests ASSERT_NO_THROW.
3683 TEST(AssertionTest, ASSERT_NO_THROW) {
3684  ASSERT_NO_THROW(ThrowNothing());
3685  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3686  "Expected: ThrowAnInteger() doesn't throw an exception."
3687  "\n Actual: it throws.");
3688 }
3689 
3690 // Tests ASSERT_ANY_THROW.
3691 TEST(AssertionTest, ASSERT_ANY_THROW) {
3692  ASSERT_ANY_THROW(ThrowAnInteger());
3694  ASSERT_ANY_THROW(ThrowNothing()),
3695  "Expected: ThrowNothing() throws an exception.\n"
3696  " Actual: it doesn't.");
3697 }
3698 
3699 #endif // GTEST_HAS_EXCEPTIONS
3700 
3701 // Makes sure we deal with the precedence of <<. This test should
3702 // compile.
3703 TEST(AssertionTest, AssertPrecedence) {
3704  ASSERT_EQ(1 < 2, true);
3705  bool false_value = false;
3706  ASSERT_EQ(true && false_value, false);
3707 }
3708 
3709 // A subroutine used by the following test.
3710 void TestEq1(int x) {
3711  ASSERT_EQ(1, x);
3712 }
3713 
3714 // Tests calling a test subroutine that's not part of a fixture.
3715 TEST(AssertionTest, NonFixtureSubroutine) {
3717  "Value of: x");
3718 }
3719 
3720 // An uncopyable class.
3721 class Uncopyable {
3722  public:
3723  explicit Uncopyable(int a_value) : value_(a_value) {}
3724 
3725  int value() const { return value_; }
3726  bool operator==(const Uncopyable& rhs) const {
3727  return value() == rhs.value();
3728  }
3729  private:
3730  // This constructor deliberately has no implementation, as we don't
3731  // want this class to be copyable.
3732  Uncopyable(const Uncopyable&); // NOLINT
3733 
3734  int value_;
3735 };
3736 
3737 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3738  return os << value.value();
3739 }
3740 
3741 
3742 bool IsPositiveUncopyable(const Uncopyable& x) {
3743  return x.value() > 0;
3744 }
3745 
3746 // A subroutine used by the following test.
3747 void TestAssertNonPositive() {
3748  Uncopyable y(-1);
3749  ASSERT_PRED1(IsPositiveUncopyable, y);
3750 }
3751 // A subroutine used by the following test.
3752 void TestAssertEqualsUncopyable() {
3753  Uncopyable x(5);
3754  Uncopyable y(-1);
3755  ASSERT_EQ(x, y);
3756 }
3757 
3758 // Tests that uncopyable objects can be used in assertions.
3759 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3760  Uncopyable x(5);
3761  ASSERT_PRED1(IsPositiveUncopyable, x);
3762  ASSERT_EQ(x, x);
3763  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3764  "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3765  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3766  "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3767 }
3768 
3769 // Tests that uncopyable objects can be used in expects.
3770 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3771  Uncopyable x(5);
3772  EXPECT_PRED1(IsPositiveUncopyable, x);
3773  Uncopyable y(-1);
3774  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3775  "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3776  EXPECT_EQ(x, x);
3778  "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3779 }
3780 
3782  kE1 = 0,
3783  kE2 = 1
3784 };
3785 
3786 TEST(AssertionTest, NamedEnum) {
3787  EXPECT_EQ(kE1, kE1);
3788  EXPECT_LT(kE1, kE2);
3789  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3790  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3791 }
3792 
3793 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3794 // anonymous enums in assertions. Therefore the following test is not
3795 // done on Mac.
3796 // Sun Studio and HP aCC also reject this code.
3797 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3798 
3799 // Tests using assertions with anonymous enums.
3800 enum {
3801  kCaseA = -1,
3802 
3803 # if GTEST_OS_LINUX
3804 
3805  // We want to test the case where the size of the anonymous enum is
3806  // larger than sizeof(int), to make sure our implementation of the
3807  // assertions doesn't truncate the enums. However, MSVC
3808  // (incorrectly) doesn't allow an enum value to exceed the range of
3809  // an int, so this has to be conditionally compiled.
3810  //
3811  // On Linux, kCaseB and kCaseA have the same value when truncated to
3812  // int size. We want to test whether this will confuse the
3813  // assertions.
3815 
3816 # else
3817 
3818  kCaseB = INT_MAX,
3819 
3820 # endif // GTEST_OS_LINUX
3821 
3822  kCaseC = 42
3823 };
3824 
3825 TEST(AssertionTest, AnonymousEnum) {
3826 # if GTEST_OS_LINUX
3827 
3828  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3829 
3830 # endif // GTEST_OS_LINUX
3831 
3832  EXPECT_EQ(kCaseA, kCaseA);
3833  EXPECT_NE(kCaseA, kCaseB);
3834  EXPECT_LT(kCaseA, kCaseB);
3835  EXPECT_LE(kCaseA, kCaseB);
3836  EXPECT_GT(kCaseB, kCaseA);
3837  EXPECT_GE(kCaseA, kCaseA);
3838  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3839  "(kCaseA) >= (kCaseB)");
3840  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3841  "-1 vs 42");
3842 
3843  ASSERT_EQ(kCaseA, kCaseA);
3844  ASSERT_NE(kCaseA, kCaseB);
3845  ASSERT_LT(kCaseA, kCaseB);
3846  ASSERT_LE(kCaseA, kCaseB);
3847  ASSERT_GT(kCaseB, kCaseA);
3848  ASSERT_GE(kCaseA, kCaseA);
3849 
3850 # ifndef __BORLANDC__
3851 
3852  // ICE's in C++Builder.
3853  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3854  "Value of: kCaseB");
3855  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3856  "Actual: 42");
3857 # endif
3858 
3859  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3860  "Which is: -1");
3861 }
3862 
3863 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3864 
3865 #if GTEST_OS_WINDOWS
3866 
3867 static HRESULT UnexpectedHRESULTFailure() {
3868  return E_UNEXPECTED;
3869 }
3870 
3871 static HRESULT OkHRESULTSuccess() {
3872  return S_OK;
3873 }
3874 
3875 static HRESULT FalseHRESULTSuccess() {
3876  return S_FALSE;
3877 }
3878 
3879 // HRESULT assertion tests test both zero and non-zero
3880 // success codes as well as failure message for each.
3881 //
3882 // Windows CE doesn't support message texts.
3883 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3884  EXPECT_HRESULT_SUCCEEDED(S_OK);
3885  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3886 
3887  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3888  "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3889  " Actual: 0x8000FFFF");
3890 }
3891 
3892 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3893  ASSERT_HRESULT_SUCCEEDED(S_OK);
3894  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3895 
3896  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3897  "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3898  " Actual: 0x8000FFFF");
3899 }
3900 
3901 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3902  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3903 
3904  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3905  "Expected: (OkHRESULTSuccess()) fails.\n"
3906  " Actual: 0x0");
3907  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3908  "Expected: (FalseHRESULTSuccess()) fails.\n"
3909  " Actual: 0x1");
3910 }
3911 
3912 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3913  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3914 
3915 # ifndef __BORLANDC__
3916 
3917  // ICE's in C++Builder 2007 and 2009.
3918  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3919  "Expected: (OkHRESULTSuccess()) fails.\n"
3920  " Actual: 0x0");
3921 # endif
3922 
3923  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3924  "Expected: (FalseHRESULTSuccess()) fails.\n"
3925  " Actual: 0x1");
3926 }
3927 
3928 // Tests that streaming to the HRESULT macros works.
3929 TEST(HRESULTAssertionTest, Streaming) {
3930  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3931  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3932  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3933  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3934 
3936  EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3937  "expected failure");
3938 
3939 # ifndef __BORLANDC__
3940 
3941  // ICE's in C++Builder 2007 and 2009.
3943  ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3944  "expected failure");
3945 # endif
3946 
3948  EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3949  "expected failure");
3950 
3952  ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3953  "expected failure");
3954 }
3955 
3956 #endif // GTEST_OS_WINDOWS
3957 
3958 #ifdef __BORLANDC__
3959 // Silences warnings: "Condition is always true", "Unreachable code"
3960 # pragma option push -w-ccc -w-rch
3961 #endif
3962 
3963 // Tests that the assertion macros behave like single statements.
3964 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3965  if (AlwaysFalse())
3966  ASSERT_TRUE(false) << "This should never be executed; "
3967  "It's a compilation test only.";
3968 
3969  if (AlwaysTrue())
3970  EXPECT_FALSE(false);
3971  else
3972  ; // NOLINT
3973 
3974  if (AlwaysFalse())
3975  ASSERT_LT(1, 3);
3976 
3977  if (AlwaysFalse())
3978  ; // NOLINT
3979  else
3980  EXPECT_GT(3, 2) << "";
3981 }
3982 
3983 #if GTEST_HAS_EXCEPTIONS
3984 // Tests that the compiler will not complain about unreachable code in the
3985 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
3986 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
3987  int n = 0;
3988 
3989  EXPECT_THROW(throw 1, int);
3990  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
3991  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
3992  EXPECT_NO_THROW(n++);
3994  EXPECT_ANY_THROW(throw 1);
3996 }
3997 
3998 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
3999  if (AlwaysFalse())
4000  EXPECT_THROW(ThrowNothing(), bool);
4001 
4002  if (AlwaysTrue())
4003  EXPECT_THROW(ThrowAnInteger(), int);
4004  else
4005  ; // NOLINT
4006 
4007  if (AlwaysFalse())
4008  EXPECT_NO_THROW(ThrowAnInteger());
4009 
4010  if (AlwaysTrue())
4011  EXPECT_NO_THROW(ThrowNothing());
4012  else
4013  ; // NOLINT
4014 
4015  if (AlwaysFalse())
4016  EXPECT_ANY_THROW(ThrowNothing());
4017 
4018  if (AlwaysTrue())
4019  EXPECT_ANY_THROW(ThrowAnInteger());
4020  else
4021  ; // NOLINT
4022 }
4023 #endif // GTEST_HAS_EXCEPTIONS
4024 
4025 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4026  if (AlwaysFalse())
4027  EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4028  << "It's a compilation test only.";
4029  else
4030  ; // NOLINT
4031 
4032  if (AlwaysFalse())
4033  ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4034  else
4035  ; // NOLINT
4036 
4037  if (AlwaysTrue())
4039  else
4040  ; // NOLINT
4041 
4042  if (AlwaysFalse())
4043  ; // NOLINT
4044  else
4046 }
4047 
4048 // Tests that the assertion macros work well with switch statements.
4049 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4050  switch (0) {
4051  case 1:
4052  break;
4053  default:
4054  ASSERT_TRUE(true);
4055  }
4056 
4057  switch (0)
4058  case 0:
4059  EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4060 
4061  // Binary assertions are implemented using a different code path
4062  // than the Boolean assertions. Hence we test them separately.
4063  switch (0) {
4064  case 1:
4065  default:
4066  ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4067  }
4068 
4069  switch (0)
4070  case 0:
4071  EXPECT_NE(1, 2);
4072 }
4073 
4074 #if GTEST_HAS_EXCEPTIONS
4075 
4076 void ThrowAString() {
4077  throw "std::string";
4078 }
4079 
4080 // Test that the exception assertion macros compile and work with const
4081 // type qualifier.
4082 TEST(AssertionSyntaxTest, WorksWithConst) {
4083  ASSERT_THROW(ThrowAString(), const char*);
4084 
4085  EXPECT_THROW(ThrowAString(), const char*);
4086 }
4087 
4088 #endif // GTEST_HAS_EXCEPTIONS
4089 
4090 } // namespace
4091 
4092 namespace testing {
4093 
4094 // Tests that Google Test tracks SUCCEED*.
4095 TEST(SuccessfulAssertionTest, SUCCEED) {
4096  SUCCEED();
4097  SUCCEED() << "OK";
4098  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4099 }
4100 
4101 // Tests that Google Test doesn't track successful EXPECT_*.
4102 TEST(SuccessfulAssertionTest, EXPECT) {
4103  EXPECT_TRUE(true);
4104  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4105 }
4106 
4107 // Tests that Google Test doesn't track successful EXPECT_STR*.
4108 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4109  EXPECT_STREQ("", "");
4110  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4111 }
4112 
4113 // Tests that Google Test doesn't track successful ASSERT_*.
4114 TEST(SuccessfulAssertionTest, ASSERT) {
4115  ASSERT_TRUE(true);
4116  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4117 }
4118 
4119 // Tests that Google Test doesn't track successful ASSERT_STR*.
4120 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4121  ASSERT_STREQ("", "");
4122  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4123 }
4124 
4125 } // namespace testing
4126 
4127 namespace {
4128 
4129 // Tests the message streaming variation of assertions.
4130 
4131 TEST(AssertionWithMessageTest, EXPECT) {
4132  EXPECT_EQ(1, 1) << "This should succeed.";
4133  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4134  "Expected failure #1");
4135  EXPECT_LE(1, 2) << "This should succeed.";
4136  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4137  "Expected failure #2.");
4138  EXPECT_GE(1, 0) << "This should succeed.";
4139  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4140  "Expected failure #3.");
4141 
4142  EXPECT_STREQ("1", "1") << "This should succeed.";
4143  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4144  "Expected failure #4.");
4145  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4146  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4147  "Expected failure #5.");
4148 
4149  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4150  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4151  "Expected failure #6.");
4152  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4153 }
4154 
4155 TEST(AssertionWithMessageTest, ASSERT) {
4156  ASSERT_EQ(1, 1) << "This should succeed.";
4157  ASSERT_NE(1, 2) << "This should succeed.";
4158  ASSERT_LE(1, 2) << "This should succeed.";
4159  ASSERT_LT(1, 2) << "This should succeed.";
4160  ASSERT_GE(1, 0) << "This should succeed.";
4161  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4162  "Expected failure.");
4163 }
4164 
4165 TEST(AssertionWithMessageTest, ASSERT_STR) {
4166  ASSERT_STREQ("1", "1") << "This should succeed.";
4167  ASSERT_STRNE("1", "2") << "This should succeed.";
4168  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4169  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4170  "Expected failure.");
4171 }
4172 
4173 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4174  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4175  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4176  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.", // NOLINT
4177  "Expect failure.");
4178  // To work around a bug in gcc 2.95.0, there is intentionally no
4179  // space after the first comma in the previous statement.
4180 }
4181 
4182 // Tests using ASSERT_FALSE with a streamed message.
4183 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4184  ASSERT_FALSE(false) << "This shouldn't fail.";
4185  EXPECT_FATAL_FAILURE({ // NOLINT
4186  ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4187  << " evaluates to " << true;
4188  }, "Expected failure");
4189 }
4190 
4191 // Tests using FAIL with a streamed message.
4192 TEST(AssertionWithMessageTest, FAIL) {
4193  EXPECT_FATAL_FAILURE(FAIL() << 0,
4194  "0");
4195 }
4196 
4197 // Tests using SUCCEED with a streamed message.
4198 TEST(AssertionWithMessageTest, SUCCEED) {
4199  SUCCEED() << "Success == " << 1;
4200 }
4201 
4202 // Tests using ASSERT_TRUE with a streamed message.
4203 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4204  ASSERT_TRUE(true) << "This should succeed.";
4205  ASSERT_TRUE(true) << true;
4206  EXPECT_FATAL_FAILURE({ // NOLINT
4207  ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4208  << static_cast<char *>(NULL);
4209  }, "(null)(null)");
4210 }
4211 
4212 #if GTEST_OS_WINDOWS
4213 // Tests using wide strings in assertion messages.
4214 TEST(AssertionWithMessageTest, WideStringMessage) {
4215  EXPECT_NONFATAL_FAILURE({ // NOLINT
4216  EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4217  }, "This failure is expected.");
4218  EXPECT_FATAL_FAILURE({ // NOLINT
4219  ASSERT_EQ(1, 2) << "This failure is "
4220  << L"expected too.\x8120";
4221  }, "This failure is expected too.");
4222 }
4223 #endif // GTEST_OS_WINDOWS
4224 
4225 // Tests EXPECT_TRUE.
4226 TEST(ExpectTest, EXPECT_TRUE) {
4227  EXPECT_TRUE(true) << "Intentional success";
4228  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4229  "Intentional failure #1.");
4230  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4231  "Intentional failure #2.");
4232  EXPECT_TRUE(2 > 1); // NOLINT
4234  "Value of: 2 < 1\n"
4235  " Actual: false\n"
4236  "Expected: true");
4238  "2 > 3");
4239 }
4240 
4241 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4242 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4243  EXPECT_TRUE(ResultIsEven(2));
4244  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4245  "Value of: ResultIsEven(3)\n"
4246  " Actual: false (3 is odd)\n"
4247  "Expected: true");
4248  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4249  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4250  "Value of: ResultIsEvenNoExplanation(3)\n"
4251  " Actual: false (3 is odd)\n"
4252  "Expected: true");
4253 }
4254 
4255 // Tests EXPECT_FALSE with a streamed message.
4256 TEST(ExpectTest, EXPECT_FALSE) {
4257  EXPECT_FALSE(2 < 1); // NOLINT
4258  EXPECT_FALSE(false) << "Intentional success";
4259  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4260  "Intentional failure #1.");
4261  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4262  "Intentional failure #2.");
4264  "Value of: 2 > 1\n"
4265  " Actual: true\n"
4266  "Expected: false");
4268  "2 < 3");
4269 }
4270 
4271 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4272 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4273  EXPECT_FALSE(ResultIsEven(3));
4274  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4275  "Value of: ResultIsEven(2)\n"
4276  " Actual: true (2 is even)\n"
4277  "Expected: false");
4278  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4279  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4280  "Value of: ResultIsEvenNoExplanation(2)\n"
4281  " Actual: true\n"
4282  "Expected: false");
4283 }
4284 
4285 #ifdef __BORLANDC__
4286 // Restores warnings after previous "#pragma option push" supressed them
4287 # pragma option pop
4288 #endif
4289 
4290 // Tests EXPECT_EQ.
4291 TEST(ExpectTest, EXPECT_EQ) {
4292  EXPECT_EQ(5, 2 + 3);
4294  "Value of: 2*3\n"
4295  " Actual: 6\n"
4296  "Expected: 5");
4298  "2 - 3");
4299 }
4300 
4301 // Tests using EXPECT_EQ on double values. The purpose is to make
4302 // sure that the specialization we did for integer and anonymous enums
4303 // isn't used for double arguments.
4304 TEST(ExpectTest, EXPECT_EQ_Double) {
4305  // A success.
4306  EXPECT_EQ(5.6, 5.6);
4307 
4308  // A failure.
4310  "5.1");
4311 }
4312 
4313 #if GTEST_CAN_COMPARE_NULL
4314 // Tests EXPECT_EQ(NULL, pointer).
4315 TEST(ExpectTest, EXPECT_EQ_NULL) {
4316  // A success.
4317  const char* p = NULL;
4318  // Some older GCC versions may issue a spurious warning in this or the next
4319  // assertion statement. This warning should not be suppressed with
4320  // static_cast since the test verifies the ability to use bare NULL as the
4321  // expected parameter to the macro.
4322  EXPECT_EQ(NULL, p);
4323 
4324  // A failure.
4325  int n = 0;
4327  "Value of: &n\n");
4328 }
4329 #endif // GTEST_CAN_COMPARE_NULL
4330 
4331 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4332 // treated as a null pointer by the compiler, we need to make sure
4333 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4334 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4335 TEST(ExpectTest, EXPECT_EQ_0) {
4336  int n = 0;
4337 
4338  // A success.
4339  EXPECT_EQ(0, n);
4340 
4341  // A failure.
4343  "Expected: 0");
4344 }
4345 
4346 // Tests EXPECT_NE.
4347 TEST(ExpectTest, EXPECT_NE) {
4348  EXPECT_NE(6, 7);
4349 
4351  "Expected: ('a') != ('a'), "
4352  "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4354  "2");
4355  char* const p0 = NULL;
4357  "p0");
4358  // Only way to get the Nokia compiler to compile the cast
4359  // is to have a separate void* variable first. Putting
4360  // the two casts on the same line doesn't work, neither does
4361  // a direct C-style to char*.
4362  void* pv1 = (void*)0x1234; // NOLINT
4363  char* const p1 = reinterpret_cast<char*>(pv1);
4365  "p1");
4366 }
4367 
4368 // Tests EXPECT_LE.
4369 TEST(ExpectTest, EXPECT_LE) {
4370  EXPECT_LE(2, 3);
4371  EXPECT_LE(2, 2);
4373  "Expected: (2) <= (0), actual: 2 vs 0");
4375  "(1.1) <= (0.9)");
4376 }
4377 
4378 // Tests EXPECT_LT.
4379 TEST(ExpectTest, EXPECT_LT) {
4380  EXPECT_LT(2, 3);
4382  "Expected: (2) < (2), actual: 2 vs 2");
4384  "(2) < (1)");
4385 }
4386 
4387 // Tests EXPECT_GE.
4388 TEST(ExpectTest, EXPECT_GE) {
4389  EXPECT_GE(2, 1);
4390  EXPECT_GE(2, 2);
4392  "Expected: (2) >= (3), actual: 2 vs 3");
4394  "(0.9) >= (1.1)");
4395 }
4396 
4397 // Tests EXPECT_GT.
4398 TEST(ExpectTest, EXPECT_GT) {
4399  EXPECT_GT(2, 1);
4401  "Expected: (2) > (2), actual: 2 vs 2");
4403  "(2) > (3)");
4404 }
4405 
4406 #if GTEST_HAS_EXCEPTIONS
4407 
4408 // Tests EXPECT_THROW.
4409 TEST(ExpectTest, EXPECT_THROW) {
4410  EXPECT_THROW(ThrowAnInteger(), int);
4411  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4412  "Expected: ThrowAnInteger() throws an exception of "
4413  "type bool.\n Actual: it throws a different type.");
4415  EXPECT_THROW(ThrowNothing(), bool),
4416  "Expected: ThrowNothing() throws an exception of type bool.\n"
4417  " Actual: it throws nothing.");
4418 }
4419 
4420 // Tests EXPECT_NO_THROW.
4421 TEST(ExpectTest, EXPECT_NO_THROW) {
4422  EXPECT_NO_THROW(ThrowNothing());
4423  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4424  "Expected: ThrowAnInteger() doesn't throw an "
4425  "exception.\n Actual: it throws.");
4426 }
4427 
4428 // Tests EXPECT_ANY_THROW.
4429 TEST(ExpectTest, EXPECT_ANY_THROW) {
4430  EXPECT_ANY_THROW(ThrowAnInteger());
4432  EXPECT_ANY_THROW(ThrowNothing()),
4433  "Expected: ThrowNothing() throws an exception.\n"
4434  " Actual: it doesn't.");
4435 }
4436 
4437 #endif // GTEST_HAS_EXCEPTIONS
4438 
4439 // Make sure we deal with the precedence of <<.
4440 TEST(ExpectTest, ExpectPrecedence) {
4441  EXPECT_EQ(1 < 2, true);
4442  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4443  "Value of: true && false");
4444 }
4445 
4446 
4447 // Tests the StreamableToString() function.
4448 
4449 // Tests using StreamableToString() on a scalar.
4450 TEST(StreamableToStringTest, Scalar) {
4451  EXPECT_STREQ("5", StreamableToString(5).c_str());
4452 }
4453 
4454 // Tests using StreamableToString() on a non-char pointer.
4455 TEST(StreamableToStringTest, Pointer) {
4456  int n = 0;
4457  int* p = &n;
4458  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4459 }
4460 
4461 // Tests using StreamableToString() on a NULL non-char pointer.
4462 TEST(StreamableToStringTest, NullPointer) {
4463  int* p = NULL;
4464  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4465 }
4466 
4467 // Tests using StreamableToString() on a C string.
4468 TEST(StreamableToStringTest, CString) {
4469  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4470 }
4471 
4472 // Tests using StreamableToString() on a NULL C string.
4473 TEST(StreamableToStringTest, NullCString) {
4474  char* p = NULL;
4475  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4476 }
4477 
4478 // Tests using streamable values as assertion messages.
4479 
4480 // Tests using std::string as an assertion message.
4481 TEST(StreamableTest, string) {
4482  static const std::string str(
4483  "This failure message is a std::string, and is expected.");
4484  EXPECT_FATAL_FAILURE(FAIL() << str,
4485  str.c_str());
4486 }
4487 
4488 // Tests that we can output strings containing embedded NULs.
4489 // Limited to Linux because we can only do this with std::string's.
4490 TEST(StreamableTest, stringWithEmbeddedNUL) {
4491  static const char char_array_with_nul[] =
4492  "Here's a NUL\0 and some more string";
4493  static const std::string string_with_nul(char_array_with_nul,
4494  sizeof(char_array_with_nul)
4495  - 1); // drops the trailing NUL
4496  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4497  "Here's a NUL\\0 and some more string");
4498 }
4499 
4500 // Tests that we can output a NUL char.
4501 TEST(StreamableTest, NULChar) {
4502  EXPECT_FATAL_FAILURE({ // NOLINT
4503  FAIL() << "A NUL" << '\0' << " and some more string";
4504  }, "A NUL\\0 and some more string");
4505 }
4506 
4507 // Tests using int as an assertion message.
4508 TEST(StreamableTest, int) {
4509  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4510  "900913");
4511 }
4512 
4513 // Tests using NULL char pointer as an assertion message.
4514 //
4515 // In MSVC, streaming a NULL char * causes access violation. Google Test
4516 // implemented a workaround (substituting "(null)" for NULL). This
4517 // tests whether the workaround works.
4518 TEST(StreamableTest, NullCharPtr) {
4519  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4520  "(null)");
4521 }
4522 
4523 // Tests that basic IO manipulators (endl, ends, and flush) can be
4524 // streamed to testing::Message.
4525 TEST(StreamableTest, BasicIoManip) {
4526  EXPECT_FATAL_FAILURE({ // NOLINT
4527  FAIL() << "Line 1." << std::endl
4528  << "A NUL char " << std::ends << std::flush << " in line 2.";
4529  }, "Line 1.\nA NUL char \\0 in line 2.");
4530 }
4531 
4532 // Tests the macros that haven't been covered so far.
4533 
4534 void AddFailureHelper(bool* aborted) {
4535  *aborted = true;
4536  ADD_FAILURE() << "Intentional failure.";
4537  *aborted = false;
4538 }
4539 
4540 // Tests ADD_FAILURE.
4541 TEST(MacroTest, ADD_FAILURE) {
4542  bool aborted = true;
4543  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4544  "Intentional failure.");
4545  EXPECT_FALSE(aborted);
4546 }
4547 
4548 // Tests ADD_FAILURE_AT.
4549 TEST(MacroTest, ADD_FAILURE_AT) {
4550  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4551  // the failure message contains the user-streamed part.
4552  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4553 
4554  // Verifies that the user-streamed part is optional.
4555  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4556 
4557  // Unfortunately, we cannot verify that the failure message contains
4558  // the right file path and line number the same way, as
4559  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4560  // line number. Instead, we do that in gtest_output_test_.cc.
4561 }
4562 
4563 // Tests FAIL.
4564 TEST(MacroTest, FAIL) {
4566  "Failed");
4567  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4568  "Intentional failure.");
4569 }
4570 
4571 // Tests SUCCEED
4572 TEST(MacroTest, SUCCEED) {
4573  SUCCEED();
4574  SUCCEED() << "Explicit success.";
4575 }
4576 
4577 // Tests for EXPECT_EQ() and ASSERT_EQ().
4578 //
4579 // These tests fail *intentionally*, s.t. the failure messages can be
4580 // generated and tested.
4581 //
4582 // We have different tests for different argument types.
4583 
4584 // Tests using bool values in {EXPECT|ASSERT}_EQ.
4585 TEST(EqAssertionTest, Bool) {
4586  EXPECT_EQ(true, true);
4588  bool false_value = false;
4589  ASSERT_EQ(false_value, true);
4590  }, "Value of: true");
4591 }
4592 
4593 // Tests using int values in {EXPECT|ASSERT}_EQ.
4594 TEST(EqAssertionTest, Int) {
4595  ASSERT_EQ(32, 32);
4597  "33");
4598 }
4599 
4600 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
4601 TEST(EqAssertionTest, Time_T) {
4602  EXPECT_EQ(static_cast<time_t>(0),
4603  static_cast<time_t>(0));
4604  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4605  static_cast<time_t>(1234)),
4606  "1234");
4607 }
4608 
4609 // Tests using char values in {EXPECT|ASSERT}_EQ.
4610 TEST(EqAssertionTest, Char) {
4611  ASSERT_EQ('z', 'z');
4612  const char ch = 'b';
4614  "ch");
4616  "ch");
4617 }
4618 
4619 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4620 TEST(EqAssertionTest, WideChar) {
4621  EXPECT_EQ(L'b', L'b');
4622 
4623  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4624  "Value of: L'x'\n"
4625  " Actual: L'x' (120, 0x78)\n"
4626  "Expected: L'\0'\n"
4627  "Which is: L'\0' (0, 0x0)");
4628 
4629  static wchar_t wchar;
4630  wchar = L'b';
4631  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4632  "wchar");
4633  wchar = 0x8119;
4634  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4635  "Value of: wchar");
4636 }
4637 
4638 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4639 TEST(EqAssertionTest, StdString) {
4640  // Compares a const char* to an std::string that has identical
4641  // content.
4642  ASSERT_EQ("Test", ::std::string("Test"));
4643 
4644  // Compares two identical std::strings.
4645  static const ::std::string str1("A * in the middle");
4646  static const ::std::string str2(str1);
4647  EXPECT_EQ(str1, str2);
4648 
4649  // Compares a const char* to an std::string that has different
4650  // content
4651  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4652  "\"test\"");
4653 
4654  // Compares an std::string to a char* that has different content.
4655  char* const p1 = const_cast<char*>("foo");
4657  "p1");
4658 
4659  // Compares two std::strings that have different contents, one of
4660  // which having a NUL character in the middle. This should fail.
4661  static ::std::string str3(str1);
4662  str3.at(2) = '\0';
4663  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4664  "Value of: str3\n"
4665  " Actual: \"A \\0 in the middle\"");
4666 }
4667 
4668 #if GTEST_HAS_STD_WSTRING
4669 
4670 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4671 TEST(EqAssertionTest, StdWideString) {
4672  // Compares two identical std::wstrings.
4673  const ::std::wstring wstr1(L"A * in the middle");
4674  const ::std::wstring wstr2(wstr1);
4675  ASSERT_EQ(wstr1, wstr2);
4676 
4677  // Compares an std::wstring to a const wchar_t* that has identical
4678  // content.
4679  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4680  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4681 
4682  // Compares an std::wstring to a const wchar_t* that has different
4683  // content.
4684  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4685  EXPECT_NONFATAL_FAILURE({ // NOLINT
4686  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4687  }, "kTestX8120");
4688 
4689  // Compares two std::wstrings that have different contents, one of
4690  // which having a NUL character in the middle.
4691  ::std::wstring wstr3(wstr1);
4692  wstr3.at(2) = L'\0';
4693  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4694  "wstr3");
4695 
4696  // Compares a wchar_t* to an std::wstring that has different
4697  // content.
4698  EXPECT_FATAL_FAILURE({ // NOLINT
4699  ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4700  }, "");
4701 }
4702 
4703 #endif // GTEST_HAS_STD_WSTRING
4704 
4705 #if GTEST_HAS_GLOBAL_STRING
4706 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
4707 TEST(EqAssertionTest, GlobalString) {
4708  // Compares a const char* to a ::string that has identical content.
4709  EXPECT_EQ("Test", ::string("Test"));
4710 
4711  // Compares two identical ::strings.
4712  const ::string str1("A * in the middle");
4713  const ::string str2(str1);
4714  ASSERT_EQ(str1, str2);
4715 
4716  // Compares a ::string to a const char* that has different content.
4717  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4718  "test");
4719 
4720  // Compares two ::strings that have different contents, one of which
4721  // having a NUL character in the middle.
4722  ::string str3(str1);
4723  str3.at(2) = '\0';
4724  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4725  "str3");
4726 
4727  // Compares a ::string to a char* that has different content.
4728  EXPECT_FATAL_FAILURE({ // NOLINT
4729  ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4730  }, "");
4731 }
4732 
4733 #endif // GTEST_HAS_GLOBAL_STRING
4734 
4735 #if GTEST_HAS_GLOBAL_WSTRING
4736 
4737 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4738 TEST(EqAssertionTest, GlobalWideString) {
4739  // Compares two identical ::wstrings.
4740  static const ::wstring wstr1(L"A * in the middle");
4741  static const ::wstring wstr2(wstr1);
4742  EXPECT_EQ(wstr1, wstr2);
4743 
4744  // Compares a const wchar_t* to a ::wstring that has identical content.
4745  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4746  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4747 
4748  // Compares a const wchar_t* to a ::wstring that has different
4749  // content.
4750  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4751  EXPECT_NONFATAL_FAILURE({ // NOLINT
4752  EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4753  }, "Test\\x8119");
4754 
4755  // Compares a wchar_t* to a ::wstring that has different content.
4756  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4757  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4758  "bar");
4759 
4760  // Compares two ::wstrings that have different contents, one of which
4761  // having a NUL character in the middle.
4762  static ::wstring wstr3;
4763  wstr3 = wstr1;
4764  wstr3.at(2) = L'\0';
4765  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4766  "wstr3");
4767 }
4768 
4769 #endif // GTEST_HAS_GLOBAL_WSTRING
4770 
4771 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
4772 TEST(EqAssertionTest, CharPointer) {
4773  char* const p0 = NULL;
4774  // Only way to get the Nokia compiler to compile the cast
4775  // is to have a separate void* variable first. Putting
4776  // the two casts on the same line doesn't work, neither does
4777  // a direct C-style to char*.
4778  void* pv1 = (void*)0x1234; // NOLINT
4779  void* pv2 = (void*)0xABC0; // NOLINT
4780  char* const p1 = reinterpret_cast<char*>(pv1);
4781  char* const p2 = reinterpret_cast<char*>(pv2);
4782  ASSERT_EQ(p1, p1);
4783 
4785  "Value of: p2");
4787  "p2");
4788  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4789  reinterpret_cast<char*>(0xABC0)),
4790  "ABC0");
4791 }
4792 
4793 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4794 TEST(EqAssertionTest, WideCharPointer) {
4795  wchar_t* const p0 = NULL;
4796  // Only way to get the Nokia compiler to compile the cast
4797  // is to have a separate void* variable first. Putting
4798  // the two casts on the same line doesn't work, neither does
4799  // a direct C-style to char*.
4800  void* pv1 = (void*)0x1234; // NOLINT
4801  void* pv2 = (void*)0xABC0; // NOLINT
4802  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4803  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4804  EXPECT_EQ(p0, p0);
4805 
4807  "Value of: p2");
4809  "p2");
4810  void* pv3 = (void*)0x1234; // NOLINT
4811  void* pv4 = (void*)0xABC0; // NOLINT
4812  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4813  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4815  "p4");
4816 }
4817 
4818 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4819 TEST(EqAssertionTest, OtherPointer) {
4820  ASSERT_EQ(static_cast<const int*>(NULL),
4821  static_cast<const int*>(NULL));
4822  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4823  reinterpret_cast<const int*>(0x1234)),
4824  "0x1234");
4825 }
4826 
4827 // A class that supports binary comparison operators but not streaming.
4828 class UnprintableChar {
4829  public:
4830  explicit UnprintableChar(char ch) : char_(ch) {}
4831 
4832  bool operator==(const UnprintableChar& rhs) const {
4833  return char_ == rhs.char_;
4834  }
4835  bool operator!=(const UnprintableChar& rhs) const {
4836  return char_ != rhs.char_;
4837  }
4838  bool operator<(const UnprintableChar& rhs) const {
4839  return char_ < rhs.char_;
4840  }
4841  bool operator<=(const UnprintableChar& rhs) const {
4842  return char_ <= rhs.char_;
4843  }
4844  bool operator>(const UnprintableChar& rhs) const {
4845  return char_ > rhs.char_;
4846  }
4847  bool operator>=(const UnprintableChar& rhs) const {
4848  return char_ >= rhs.char_;
4849  }
4850 
4851  private:
4852  char char_;
4853 };
4854 
4855 // Tests that ASSERT_EQ() and friends don't require the arguments to
4856 // be printable.
4857 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4858  const UnprintableChar x('x'), y('y');
4859  ASSERT_EQ(x, x);
4860  EXPECT_NE(x, y);
4861  ASSERT_LT(x, y);
4862  EXPECT_LE(x, y);
4863  ASSERT_GT(y, x);
4864  EXPECT_GE(x, x);
4865 
4866  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4867  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4868  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4869  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4870  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4871 
4872  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4873  // variables, so we have to write UnprintableChar('x') instead of x.
4874 #ifndef __BORLANDC__
4875  // ICE's in C++Builder.
4876  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4877  "1-byte object <78>");
4878  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4879  "1-byte object <78>");
4880 #endif
4881  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4882  "1-byte object <79>");
4883  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4884  "1-byte object <78>");
4885  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4886  "1-byte object <79>");
4887 }
4888 
4889 // Tests the FRIEND_TEST macro.
4890 
4891 // This class has a private member we want to test. We will test it
4892 // both in a TEST and in a TEST_F.
4893 class Foo {
4894  public:
4895  Foo() {}
4896 
4897  private:
4898  int Bar() const { return 1; }
4899 
4900  // Declares the friend tests that can access the private member
4901  // Bar().
4902  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4903  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4904 };
4905 
4906 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4907 // class's private members. This should compile.
4908 TEST(FRIEND_TEST_Test, TEST) {
4909  ASSERT_EQ(1, Foo().Bar());
4910 }
4911 
4912 // The fixture needed to test using FRIEND_TEST with TEST_F.
4913 class FRIEND_TEST_Test2 : public Test {
4914  protected:
4915  Foo foo;
4916 };
4917 
4918 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4919 // class's private members. This should compile.
4920 TEST_F(FRIEND_TEST_Test2, TEST_F) {
4921  ASSERT_EQ(1, foo.Bar());
4922 }
4923 
4924 // Tests the life cycle of Test objects.
4925 
4926 // The test fixture for testing the life cycle of Test objects.
4927 //
4928 // This class counts the number of live test objects that uses this
4929 // fixture.
4930 class TestLifeCycleTest : public Test {
4931  protected:
4932  // Constructor. Increments the number of test objects that uses
4933  // this fixture.
4934  TestLifeCycleTest() { count_++; }
4935 
4936  // Destructor. Decrements the number of test objects that uses this
4937  // fixture.
4938  ~TestLifeCycleTest() { count_--; }
4939 
4940  // Returns the number of live test objects that uses this fixture.
4941  int count() const { return count_; }
4942 
4943  private:
4944  static int count_;
4945 };
4946 
4947 int TestLifeCycleTest::count_ = 0;
4948 
4949 // Tests the life cycle of test objects.
4950 TEST_F(TestLifeCycleTest, Test1) {
4951  // There should be only one test object in this test case that's
4952  // currently alive.
4953  ASSERT_EQ(1, count());
4954 }
4955 
4956 // Tests the life cycle of test objects.
4957 TEST_F(TestLifeCycleTest, Test2) {
4958  // After Test1 is done and Test2 is started, there should still be
4959  // only one live test object, as the object for Test1 should've been
4960  // deleted.
4961  ASSERT_EQ(1, count());
4962 }
4963 
4964 } // namespace
4965 
4966 // Tests that the copy constructor works when it is NOT optimized away by
4967 // the compiler.
4968 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4969  // Checks that the copy constructor doesn't try to dereference NULL pointers
4970  // in the source object.
4972  AssertionResult r2 = r1;
4973  // The following line is added to prevent the compiler from optimizing
4974  // away the constructor call.
4975  r1 << "abc";
4976 
4977  AssertionResult r3 = r1;
4978  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4979  EXPECT_STREQ("abc", r1.message());
4980 }
4981 
4982 // Tests that AssertionSuccess and AssertionFailure construct
4983 // AssertionResult objects as expected.
4984 TEST(AssertionResultTest, ConstructionWorks) {
4986  EXPECT_TRUE(r1);
4987  EXPECT_STREQ("", r1.message());
4988 
4989  AssertionResult r2 = AssertionSuccess() << "abc";
4990  EXPECT_TRUE(r2);
4991  EXPECT_STREQ("abc", r2.message());
4992 
4994  EXPECT_FALSE(r3);
4995  EXPECT_STREQ("", r3.message());
4996 
4997  AssertionResult r4 = AssertionFailure() << "def";
4998  EXPECT_FALSE(r4);
4999  EXPECT_STREQ("def", r4.message());
5000 
5001  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5002  EXPECT_FALSE(r5);
5003  EXPECT_STREQ("ghi", r5.message());
5004 }
5005 
5006 // Tests that the negation flips the predicate result but keeps the message.
5007 TEST(AssertionResultTest, NegationWorks) {
5008  AssertionResult r1 = AssertionSuccess() << "abc";
5009  EXPECT_FALSE(!r1);
5010  EXPECT_STREQ("abc", (!r1).message());
5011 
5012  AssertionResult r2 = AssertionFailure() << "def";
5013  EXPECT_TRUE(!r2);
5014  EXPECT_STREQ("def", (!r2).message());
5015 }
5016 
5017 TEST(AssertionResultTest, StreamingWorks) {
5019  r << "abc" << 'd' << 0 << true;
5020  EXPECT_STREQ("abcd0true", r.message());
5021 }
5022 
5023 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5025  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5026  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5027 }
5028 
5029 // Tests streaming a user type whose definition and operator << are
5030 // both in the global namespace.
5031 class Base {
5032  public:
5033  explicit Base(int an_x) : x_(an_x) {}
5034  int x() const { return x_; }
5035  private:
5036  int x_;
5037 };
5038 std::ostream& operator<<(std::ostream& os,
5039  const Base& val) {
5040  return os << val.x();
5041 }
5042 std::ostream& operator<<(std::ostream& os,
5043  const Base* pointer) {
5044  return os << "(" << pointer->x() << ")";
5045 }
5046 
5047 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5048  Message msg;
5049  Base a(1);
5050 
5051  msg << a << &a; // Uses ::operator<<.
5052  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5053 }
5054 
5055 // Tests streaming a user type whose definition and operator<< are
5056 // both in an unnamed namespace.
5057 namespace {
5058 class MyTypeInUnnamedNameSpace : public Base {
5059  public:
5060  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5061 };
5062 std::ostream& operator<<(std::ostream& os,
5063  const MyTypeInUnnamedNameSpace& val) {
5064  return os << val.x();
5065 }
5066 std::ostream& operator<<(std::ostream& os,
5067  const MyTypeInUnnamedNameSpace* pointer) {
5068  return os << "(" << pointer->x() << ")";
5069 }
5070 } // namespace
5071 
5072 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5073  Message msg;
5074  MyTypeInUnnamedNameSpace a(1);
5075 
5076  msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5077  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5078 }
5079 
5080 // Tests streaming a user type whose definition and operator<< are
5081 // both in a user namespace.
5082 namespace namespace1 {
5083 class MyTypeInNameSpace1 : public Base {
5084  public:
5085  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5086 };
5087 std::ostream& operator<<(std::ostream& os,
5088  const MyTypeInNameSpace1& val) {
5089  return os << val.x();
5090 }
5091 std::ostream& operator<<(std::ostream& os,
5092  const MyTypeInNameSpace1* pointer) {
5093  return os << "(" << pointer->x() << ")";
5094 }
5095 } // namespace namespace1
5096 
5097 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5098  Message msg;
5100 
5101  msg << a << &a; // Uses namespace1::operator<<.
5102  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5103 }
5104 
5105 // Tests streaming a user type whose definition is in a user namespace
5106 // but whose operator<< is in the global namespace.
5107 namespace namespace2 {
5108 class MyTypeInNameSpace2 : public ::Base {
5109  public:
5110  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5111 };
5112 } // namespace namespace2
5113 std::ostream& operator<<(std::ostream& os,
5114  const namespace2::MyTypeInNameSpace2& val) {
5115  return os << val.x();
5116 }
5117 std::ostream& operator<<(std::ostream& os,
5118  const namespace2::MyTypeInNameSpace2* pointer) {
5119  return os << "(" << pointer->x() << ")";
5120 }
5121 
5122 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5123  Message msg;
5125 
5126  msg << a << &a; // Uses ::operator<<.
5127  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5128 }
5129 
5130 // Tests streaming NULL pointers to testing::Message.
5131 TEST(MessageTest, NullPointers) {
5132  Message msg;
5133  char* const p1 = NULL;
5134  unsigned char* const p2 = NULL;
5135  int* p3 = NULL;
5136  double* p4 = NULL;
5137  bool* p5 = NULL;
5138  Message* p6 = NULL;
5139 
5140  msg << p1 << p2 << p3 << p4 << p5 << p6;
5141  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5142  msg.GetString().c_str());
5143 }
5144 
5145 // Tests streaming wide strings to testing::Message.
5146 TEST(MessageTest, WideStrings) {
5147  // Streams a NULL of type const wchar_t*.
5148  const wchar_t* const_wstr = NULL;
5149  EXPECT_STREQ("(null)",
5150  (Message() << const_wstr).GetString().c_str());
5151 
5152  // Streams a NULL of type wchar_t*.
5153  wchar_t* wstr = NULL;
5154  EXPECT_STREQ("(null)",
5155  (Message() << wstr).GetString().c_str());
5156 
5157  // Streams a non-NULL of type const wchar_t*.
5158  const_wstr = L"abc\x8119";
5159  EXPECT_STREQ("abc\xe8\x84\x99",
5160  (Message() << const_wstr).GetString().c_str());
5161 
5162  // Streams a non-NULL of type wchar_t*.
5163  wstr = const_cast<wchar_t*>(const_wstr);
5164  EXPECT_STREQ("abc\xe8\x84\x99",
5165  (Message() << wstr).GetString().c_str());
5166 }
5167 
5168 
5169 // This line tests that we can define tests in the testing namespace.
5170 namespace testing {
5171 
5172 // Tests the TestInfo class.
5173 
5174 class TestInfoTest : public Test {
5175  protected:
5176  static const TestInfo* GetTestInfo(const char* test_name) {
5177  const TestCase* const test_case = GetUnitTestImpl()->
5178  GetTestCase("TestInfoTest", "", NULL, NULL);
5179 
5180  for (int i = 0; i < test_case->total_test_count(); ++i) {
5181  const TestInfo* const test_info = test_case->GetTestInfo(i);
5182  if (strcmp(test_name, test_info->name()) == 0)
5183  return test_info;
5184  }
5185  return NULL;
5186  }
5187 
5188  static const TestResult* GetTestResult(
5189  const TestInfo* test_info) {
5190  return test_info->result();
5191  }
5192 };
5193 
5194 // Tests TestInfo::test_case_name() and TestInfo::name().
5195 TEST_F(TestInfoTest, Names) {
5196  const TestInfo* const test_info = GetTestInfo("Names");
5197 
5198  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5199  ASSERT_STREQ("Names", test_info->name());
5200 }
5201 
5202 // Tests TestInfo::result().
5203 TEST_F(TestInfoTest, result) {
5204  const TestInfo* const test_info = GetTestInfo("result");
5205 
5206  // Initially, there is no TestPartResult for this test.
5207  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5208 
5209  // After the previous assertion, there is still none.
5210  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5211 }
5212 
5213 // Tests setting up and tearing down a test case.
5214 
5215 class SetUpTestCaseTest : public Test {
5216  protected:
5217  // This will be called once before the first test in this test case
5218  // is run.
5219  static void SetUpTestCase() {
5220  printf("Setting up the test case . . .\n");
5221 
5222  // Initializes some shared resource. In this simple example, we
5223  // just create a C string. More complex stuff can be done if
5224  // desired.
5225  shared_resource_ = "123";
5226 
5227  // Increments the number of test cases that have been set up.
5228  counter_++;
5229 
5230  // SetUpTestCase() should be called only once.
5231  EXPECT_EQ(1, counter_);
5232  }
5233 
5234  // This will be called once after the last test in this test case is
5235  // run.
5236  static void TearDownTestCase() {
5237  printf("Tearing down the test case . . .\n");
5238 
5239  // Decrements the number of test cases that have been set up.
5240  counter_--;
5241 
5242  // TearDownTestCase() should be called only once.
5243  EXPECT_EQ(0, counter_);
5244 
5245  // Cleans up the shared resource.
5246  shared_resource_ = NULL;
5247  }
5248 
5249  // This will be called before each test in this test case.
5250  virtual void SetUp() {
5251  // SetUpTestCase() should be called only once, so counter_ should
5252  // always be 1.
5253  EXPECT_EQ(1, counter_);
5254  }
5255 
5256  // Number of test cases that have been set up.
5257  static int counter_;
5258 
5259  // Some resource to be shared by all tests in this test case.
5260  static const char* shared_resource_;
5261 };
5262 
5264 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5265 
5266 // A test that uses the shared resource.
5267 TEST_F(SetUpTestCaseTest, Test1) {
5268  EXPECT_STRNE(NULL, shared_resource_);
5269 }
5270 
5271 // Another test that uses the shared resource.
5272 TEST_F(SetUpTestCaseTest, Test2) {
5273  EXPECT_STREQ("123", shared_resource_);
5274 }
5275 
5276 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5277 
5278 // The Flags struct stores a copy of all Google Test flags.
5279 struct Flags {
5280  // Constructs a Flags struct where each flag has its default value.
5281  Flags() : also_run_disabled_tests(false),
5282  break_on_failure(false),
5283  catch_exceptions(false),
5284  death_test_use_fork(false),
5285  filter(""),
5286  list_tests(false),
5287  output(""),
5288  print_time(true),
5289  random_seed(0),
5290  repeat(1),
5291  shuffle(false),
5292  stack_trace_depth(kMaxStackTraceDepth),
5293  stream_result_to(""),
5294  throw_on_failure(false) {}
5295 
5296  // Factory methods.
5297 
5298  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5299  // the given value.
5300  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5301  Flags flags;
5302  flags.also_run_disabled_tests = also_run_disabled_tests;
5303  return flags;
5304  }
5305 
5306  // Creates a Flags struct where the gtest_break_on_failure flag has
5307  // the given value.
5308  static Flags BreakOnFailure(bool break_on_failure) {
5309  Flags flags;
5310  flags.break_on_failure = break_on_failure;
5311  return flags;
5312  }
5313 
5314  // Creates a Flags struct where the gtest_catch_exceptions flag has
5315  // the given value.
5316  static Flags CatchExceptions(bool catch_exceptions) {
5317  Flags flags;
5318  flags.catch_exceptions = catch_exceptions;
5319  return flags;
5320  }
5321 
5322  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5323  // the given value.
5324  static Flags DeathTestUseFork(bool death_test_use_fork) {
5325  Flags flags;
5326  flags.death_test_use_fork = death_test_use_fork;
5327  return flags;
5328  }
5329 
5330  // Creates a Flags struct where the gtest_filter flag has the given
5331  // value.
5332  static Flags Filter(const char* filter) {
5333  Flags flags;
5334  flags.filter = filter;
5335  return flags;
5336  }
5337 
5338  // Creates a Flags struct where the gtest_list_tests flag has the
5339  // given value.
5340  static Flags ListTests(bool list_tests) {
5341  Flags flags;
5342  flags.list_tests = list_tests;
5343  return flags;
5344  }
5345 
5346  // Creates a Flags struct where the gtest_output flag has the given
5347  // value.
5348  static Flags Output(const char* output) {
5349  Flags flags;
5350  flags.output = output;
5351  return flags;
5352  }
5353 
5354  // Creates a Flags struct where the gtest_print_time flag has the given
5355  // value.
5356  static Flags PrintTime(bool print_time) {
5357  Flags flags;
5358  flags.print_time = print_time;
5359  return flags;
5360  }
5361 
5362  // Creates a Flags struct where the gtest_random_seed flag has
5363  // the given value.
5364  static Flags RandomSeed(Int32 random_seed) {
5365  Flags flags;
5366  flags.random_seed = random_seed;
5367  return flags;
5368  }
5369 
5370  // Creates a Flags struct where the gtest_repeat flag has the given
5371  // value.
5372  static Flags Repeat(Int32 repeat) {
5373  Flags flags;
5374  flags.repeat = repeat;
5375  return flags;
5376  }
5377 
5378  // Creates a Flags struct where the gtest_shuffle flag has
5379  // the given value.
5380  static Flags Shuffle(bool shuffle) {
5381  Flags flags;
5382  flags.shuffle = shuffle;
5383  return flags;
5384  }
5385 
5386  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5387  // the given value.
5388  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5389  Flags flags;
5390  flags.stack_trace_depth = stack_trace_depth;
5391  return flags;
5392  }
5393 
5394  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5395  // the given value.
5396  static Flags StreamResultTo(const char* stream_result_to) {
5397  Flags flags;
5398  flags.stream_result_to = stream_result_to;
5399  return flags;
5400  }
5401 
5402  // Creates a Flags struct where the gtest_throw_on_failure flag has
5403  // the given value.
5404  static Flags ThrowOnFailure(bool throw_on_failure) {
5405  Flags flags;
5406  flags.throw_on_failure = throw_on_failure;
5407  return flags;
5408  }
5409 
5410  // These fields store the flag values.
5411  bool also_run_disabled_tests;
5412  bool break_on_failure;
5413  bool catch_exceptions;
5414  bool death_test_use_fork;
5415  const char* filter;
5416  bool list_tests;
5417  const char* output;
5418  bool print_time;
5419  Int32 random_seed;
5420  Int32 repeat;
5421  bool shuffle;
5422  Int32 stack_trace_depth;
5423  const char* stream_result_to;
5424  bool throw_on_failure;
5425 };
5426 
5427 // Fixture for testing InitGoogleTest().
5428 class InitGoogleTestTest : public Test {
5429  protected:
5430  // Clears the flags before each test.
5431  virtual void SetUp() {
5432  GTEST_FLAG(also_run_disabled_tests) = false;
5433  GTEST_FLAG(break_on_failure) = false;
5434  GTEST_FLAG(catch_exceptions) = false;
5435  GTEST_FLAG(death_test_use_fork) = false;
5436  GTEST_FLAG(filter) = "";
5437  GTEST_FLAG(list_tests) = false;
5438  GTEST_FLAG(output) = "";
5439  GTEST_FLAG(print_time) = true;
5440  GTEST_FLAG(random_seed) = 0;
5441  GTEST_FLAG(repeat) = 1;
5442  GTEST_FLAG(shuffle) = false;
5443  GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5444  GTEST_FLAG(stream_result_to) = "";
5445  GTEST_FLAG(throw_on_failure) = false;
5446  }
5447 
5448  // Asserts that two narrow or wide string arrays are equal.
5449  template <typename CharType>
5450  static void AssertStringArrayEq(size_t size1, CharType** array1,
5451  size_t size2, CharType** array2) {
5452  ASSERT_EQ(size1, size2) << " Array sizes different.";
5453 
5454  for (size_t i = 0; i != size1; i++) {
5455  ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5456  }
5457  }
5458 
5459  // Verifies that the flag values match the expected values.
5460  static void CheckFlags(const Flags& expected) {
5462  GTEST_FLAG(also_run_disabled_tests));
5463  EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5464  EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5465  EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5466  EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5467  EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5468  EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5469  EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5470  EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5471  EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5472  EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5473  EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5474  EXPECT_STREQ(expected.stream_result_to,
5475  GTEST_FLAG(stream_result_to).c_str());
5476  EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5477  }
5478 
5479  // Parses a command line (specified by argc1 and argv1), then
5480  // verifies that the flag values are expected and that the
5481  // recognized flags are removed from the command line.
5482  template <typename CharType>
5483  static void TestParsingFlags(int argc1, const CharType** argv1,
5484  int argc2, const CharType** argv2,
5485  const Flags& expected, bool should_print_help) {
5486  const bool saved_help_flag = ::testing::internal::g_help_flag;
5488 
5489 #if GTEST_HAS_STREAM_REDIRECTION
5490  CaptureStdout();
5491 #endif
5492 
5493  // Parses the command line.
5494  internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5495 
5496 #if GTEST_HAS_STREAM_REDIRECTION
5497  const std::string captured_stdout = GetCapturedStdout();
5498 #endif
5499 
5500  // Verifies the flag values.
5501  CheckFlags(expected);
5502 
5503  // Verifies that the recognized flags are removed from the command
5504  // line.
5505  AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5506 
5507  // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5508  // help message for the flags it recognizes.
5509  EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5510 
5511 #if GTEST_HAS_STREAM_REDIRECTION
5512  const char* const expected_help_fragment =
5513  "This program contains tests written using";
5514  if (should_print_help) {
5515  EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5516  } else {
5518  expected_help_fragment, captured_stdout);
5519  }
5520 #endif // GTEST_HAS_STREAM_REDIRECTION
5521 
5522  ::testing::internal::g_help_flag = saved_help_flag;
5523  }
5524 
5525  // This macro wraps TestParsingFlags s.t. the user doesn't need
5526  // to specify the array sizes.
5527 
5528 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5529  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5530  sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5531  expected, should_print_help)
5532 };
5533 
5534 // Tests parsing an empty command line.
5535 TEST_F(InitGoogleTestTest, Empty) {
5536  const char* argv[] = {
5537  NULL
5538  };
5539 
5540  const char* argv2[] = {
5541  NULL
5542  };
5543 
5544  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5545 }
5546 
5547 // Tests parsing a command line that has no flag.
5548 TEST_F(InitGoogleTestTest, NoFlag) {
5549  const char* argv[] = {
5550  "foo.exe",
5551  NULL
5552  };
5553 
5554  const char* argv2[] = {
5555  "foo.exe",
5556  NULL
5557  };
5558 
5559  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5560 }
5561 
5562 // Tests parsing a bad --gtest_filter flag.
5563 TEST_F(InitGoogleTestTest, FilterBad) {
5564  const char* argv[] = {
5565  "foo.exe",
5566  "--gtest_filter",
5567  NULL
5568  };
5569 
5570  const char* argv2[] = {
5571  "foo.exe",
5572  "--gtest_filter",
5573  NULL
5574  };
5575 
5576  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5577 }
5578 
5579 // Tests parsing an empty --gtest_filter flag.
5580 TEST_F(InitGoogleTestTest, FilterEmpty) {
5581  const char* argv[] = {
5582  "foo.exe",
5583  "--gtest_filter=",
5584  NULL
5585  };
5586 
5587  const char* argv2[] = {
5588  "foo.exe",
5589  NULL
5590  };
5591 
5592  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5593 }
5594 
5595 // Tests parsing a non-empty --gtest_filter flag.
5596 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5597  const char* argv[] = {
5598  "foo.exe",
5599  "--gtest_filter=abc",
5600  NULL
5601  };
5602 
5603  const char* argv2[] = {
5604  "foo.exe",
5605  NULL
5606  };
5607 
5608  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5609 }
5610 
5611 // Tests parsing --gtest_break_on_failure.
5612 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5613  const char* argv[] = {
5614  "foo.exe",
5615  "--gtest_break_on_failure",
5616  NULL
5617 };
5618 
5619  const char* argv2[] = {
5620  "foo.exe",
5621  NULL
5622  };
5623 
5624  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5625 }
5626 
5627 // Tests parsing --gtest_break_on_failure=0.
5628 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5629  const char* argv[] = {
5630  "foo.exe",
5631  "--gtest_break_on_failure=0",
5632  NULL
5633  };
5634 
5635  const char* argv2[] = {
5636  "foo.exe",
5637  NULL
5638  };
5639 
5640  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5641 }
5642 
5643 // Tests parsing --gtest_break_on_failure=f.
5644 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5645  const char* argv[] = {
5646  "foo.exe",
5647  "--gtest_break_on_failure=f",
5648  NULL
5649  };
5650 
5651  const char* argv2[] = {
5652  "foo.exe",
5653  NULL
5654  };
5655 
5656  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5657 }
5658 
5659 // Tests parsing --gtest_break_on_failure=F.
5660 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5661  const char* argv[] = {
5662  "foo.exe",
5663  "--gtest_break_on_failure=F",
5664  NULL
5665  };
5666 
5667  const char* argv2[] = {
5668  "foo.exe",
5669  NULL
5670  };
5671 
5672  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5673 }
5674 
5675 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5676 // definition.
5677 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5678  const char* argv[] = {
5679  "foo.exe",
5680  "--gtest_break_on_failure=1",
5681  NULL
5682  };
5683 
5684  const char* argv2[] = {
5685  "foo.exe",
5686  NULL
5687  };
5688 
5689  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5690 }
5691 
5692 // Tests parsing --gtest_catch_exceptions.
5693 TEST_F(InitGoogleTestTest, CatchExceptions) {
5694  const char* argv[] = {
5695  "foo.exe",
5696  "--gtest_catch_exceptions",
5697  NULL
5698  };
5699 
5700  const char* argv2[] = {
5701  "foo.exe",
5702  NULL
5703  };
5704 
5705  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5706 }
5707 
5708 // Tests parsing --gtest_death_test_use_fork.
5709 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5710  const char* argv[] = {
5711  "foo.exe",
5712  "--gtest_death_test_use_fork",
5713  NULL
5714  };
5715 
5716  const char* argv2[] = {
5717  "foo.exe",
5718  NULL
5719  };
5720 
5721  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5722 }
5723 
5724 // Tests having the same flag twice with different values. The
5725 // expected behavior is that the one coming last takes precedence.
5726 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5727  const char* argv[] = {
5728  "foo.exe",
5729  "--gtest_filter=a",
5730  "--gtest_filter=b",
5731  NULL
5732  };
5733 
5734  const char* argv2[] = {
5735  "foo.exe",
5736  NULL
5737  };
5738 
5739  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5740 }
5741 
5742 // Tests having an unrecognized flag on the command line.
5743 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5744  const char* argv[] = {
5745  "foo.exe",
5746  "--gtest_break_on_failure",
5747  "bar", // Unrecognized by Google Test.
5748  "--gtest_filter=b",
5749  NULL
5750  };
5751 
5752  const char* argv2[] = {
5753  "foo.exe",
5754  "bar",
5755  NULL
5756  };
5757 
5758  Flags flags;
5759  flags.break_on_failure = true;
5760  flags.filter = "b";
5761  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5762 }
5763 
5764 // Tests having a --gtest_list_tests flag
5765 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5766  const char* argv[] = {
5767  "foo.exe",
5768  "--gtest_list_tests",
5769  NULL
5770  };
5771 
5772  const char* argv2[] = {
5773  "foo.exe",
5774  NULL
5775  };
5776 
5777  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5778 }
5779 
5780 // Tests having a --gtest_list_tests flag with a "true" value
5781 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5782  const char* argv[] = {
5783  "foo.exe",
5784  "--gtest_list_tests=1",
5785  NULL
5786  };
5787 
5788  const char* argv2[] = {
5789  "foo.exe",
5790  NULL
5791  };
5792 
5793  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5794 }
5795 
5796 // Tests having a --gtest_list_tests flag with a "false" value
5797 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5798  const char* argv[] = {
5799  "foo.exe",
5800  "--gtest_list_tests=0",
5801  NULL
5802  };
5803 
5804  const char* argv2[] = {
5805  "foo.exe",
5806  NULL
5807  };
5808 
5809  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5810 }
5811 
5812 // Tests parsing --gtest_list_tests=f.
5813 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5814  const char* argv[] = {
5815  "foo.exe",
5816  "--gtest_list_tests=f",
5817  NULL
5818  };
5819 
5820  const char* argv2[] = {
5821  "foo.exe",
5822  NULL
5823  };
5824 
5825  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5826 }
5827 
5828 // Tests parsing --gtest_list_tests=F.
5829 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5830  const char* argv[] = {
5831  "foo.exe",
5832  "--gtest_list_tests=F",
5833  NULL
5834  };
5835 
5836  const char* argv2[] = {
5837  "foo.exe",
5838  NULL
5839  };
5840 
5841  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5842 }
5843 
5844 // Tests parsing --gtest_output (invalid).
5845 TEST_F(InitGoogleTestTest, OutputEmpty) {
5846  const char* argv[] = {
5847  "foo.exe",
5848  "--gtest_output",
5849  NULL
5850  };
5851 
5852  const char* argv2[] = {
5853  "foo.exe",
5854  "--gtest_output",
5855  NULL
5856  };
5857 
5858  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5859 }
5860 
5861 // Tests parsing --gtest_output=xml
5862 TEST_F(InitGoogleTestTest, OutputXml) {
5863  const char* argv[] = {
5864  "foo.exe",
5865  "--gtest_output=xml",
5866  NULL
5867  };
5868 
5869  const char* argv2[] = {
5870  "foo.exe",
5871  NULL
5872  };
5873 
5874  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5875 }
5876 
5877 // Tests parsing --gtest_output=xml:file
5878 TEST_F(InitGoogleTestTest, OutputXmlFile) {
5879  const char* argv[] = {
5880  "foo.exe",
5881  "--gtest_output=xml:file",
5882  NULL
5883  };
5884 
5885  const char* argv2[] = {
5886  "foo.exe",
5887  NULL
5888  };
5889 
5890  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5891 }
5892 
5893 // Tests parsing --gtest_output=xml:directory/path/
5894 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5895  const char* argv[] = {
5896  "foo.exe",
5897  "--gtest_output=xml:directory/path/",
5898  NULL
5899  };
5900 
5901  const char* argv2[] = {
5902  "foo.exe",
5903  NULL
5904  };
5905 
5906  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5907  Flags::Output("xml:directory/path/"), false);
5908 }
5909 
5910 // Tests having a --gtest_print_time flag
5911 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5912  const char* argv[] = {
5913  "foo.exe",
5914  "--gtest_print_time",
5915  NULL
5916  };
5917 
5918  const char* argv2[] = {
5919  "foo.exe",
5920  NULL
5921  };
5922 
5923  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5924 }
5925 
5926 // Tests having a --gtest_print_time flag with a "true" value
5927 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5928  const char* argv[] = {
5929  "foo.exe",
5930  "--gtest_print_time=1",
5931  NULL
5932  };
5933 
5934  const char* argv2[] = {
5935  "foo.exe",
5936  NULL
5937  };
5938 
5939  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5940 }
5941 
5942 // Tests having a --gtest_print_time flag with a "false" value
5943 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5944  const char* argv[] = {
5945  "foo.exe",
5946  "--gtest_print_time=0",
5947  NULL
5948  };
5949 
5950  const char* argv2[] = {
5951  "foo.exe",
5952  NULL
5953  };
5954 
5955  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5956 }
5957 
5958 // Tests parsing --gtest_print_time=f.
5959 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5960  const char* argv[] = {
5961  "foo.exe",
5962  "--gtest_print_time=f",
5963  NULL
5964  };
5965 
5966  const char* argv2[] = {
5967  "foo.exe",
5968  NULL
5969  };
5970 
5971  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5972 }
5973 
5974 // Tests parsing --gtest_print_time=F.
5975 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5976  const char* argv[] = {
5977  "foo.exe",
5978  "--gtest_print_time=F",
5979  NULL
5980  };
5981 
5982  const char* argv2[] = {
5983  "foo.exe",
5984  NULL
5985  };
5986 
5987  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5988 }
5989 
5990 // Tests parsing --gtest_random_seed=number
5991 TEST_F(InitGoogleTestTest, RandomSeed) {
5992  const char* argv[] = {
5993  "foo.exe",
5994  "--gtest_random_seed=1000",
5995  NULL
5996  };
5997 
5998  const char* argv2[] = {
5999  "foo.exe",
6000  NULL
6001  };
6002 
6003  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6004 }
6005 
6006 // Tests parsing --gtest_repeat=number
6007 TEST_F(InitGoogleTestTest, Repeat) {
6008  const char* argv[] = {
6009  "foo.exe",
6010  "--gtest_repeat=1000",
6011  NULL
6012  };
6013 
6014  const char* argv2[] = {
6015  "foo.exe",
6016  NULL
6017  };
6018 
6019  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6020 }
6021 
6022 // Tests having a --gtest_also_run_disabled_tests flag
6023 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6024  const char* argv[] = {
6025  "foo.exe",
6026  "--gtest_also_run_disabled_tests",
6027  NULL
6028  };
6029 
6030  const char* argv2[] = {
6031  "foo.exe",
6032  NULL
6033  };
6034 
6035  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6036  Flags::AlsoRunDisabledTests(true), false);
6037 }
6038 
6039 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6040 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6041  const char* argv[] = {
6042  "foo.exe",
6043  "--gtest_also_run_disabled_tests=1",
6044  NULL
6045  };
6046 
6047  const char* argv2[] = {
6048  "foo.exe",
6049  NULL
6050  };
6051 
6052  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6053  Flags::AlsoRunDisabledTests(true), false);
6054 }
6055 
6056 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6057 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6058  const char* argv[] = {
6059  "foo.exe",
6060  "--gtest_also_run_disabled_tests=0",
6061  NULL
6062  };
6063 
6064  const char* argv2[] = {
6065  "foo.exe",
6066  NULL
6067  };
6068 
6069  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6070  Flags::AlsoRunDisabledTests(false), false);
6071 }
6072 
6073 // Tests parsing --gtest_shuffle.
6074 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6075  const char* argv[] = {
6076  "foo.exe",
6077  "--gtest_shuffle",
6078  NULL
6079 };
6080 
6081  const char* argv2[] = {
6082  "foo.exe",
6083  NULL
6084  };
6085 
6086  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6087 }
6088 
6089 // Tests parsing --gtest_shuffle=0.
6090 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6091  const char* argv[] = {
6092  "foo.exe",
6093  "--gtest_shuffle=0",
6094  NULL
6095  };
6096 
6097  const char* argv2[] = {
6098  "foo.exe",
6099  NULL
6100  };
6101 
6102  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6103 }
6104 
6105 // Tests parsing a --gtest_shuffle flag that has a "true"
6106 // definition.
6107 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6108  const char* argv[] = {
6109  "foo.exe",
6110  "--gtest_shuffle=1",
6111  NULL
6112  };
6113 
6114  const char* argv2[] = {
6115  "foo.exe",
6116  NULL
6117  };
6118 
6119  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6120 }
6121 
6122 // Tests parsing --gtest_stack_trace_depth=number.
6123 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6124  const char* argv[] = {
6125  "foo.exe",
6126  "--gtest_stack_trace_depth=5",
6127  NULL
6128  };
6129 
6130  const char* argv2[] = {
6131  "foo.exe",
6132  NULL
6133  };
6134 
6135  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6136 }
6137 
6138 TEST_F(InitGoogleTestTest, StreamResultTo) {
6139  const char* argv[] = {
6140  "foo.exe",
6141  "--gtest_stream_result_to=localhost:1234",
6142  NULL
6143  };
6144 
6145  const char* argv2[] = {
6146  "foo.exe",
6147  NULL
6148  };
6149 
6151  argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6152 }
6153 
6154 // Tests parsing --gtest_throw_on_failure.
6155 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6156  const char* argv[] = {
6157  "foo.exe",
6158  "--gtest_throw_on_failure",
6159  NULL
6160 };
6161 
6162  const char* argv2[] = {
6163  "foo.exe",
6164  NULL
6165  };
6166 
6167  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6168 }
6169 
6170 // Tests parsing --gtest_throw_on_failure=0.
6171 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6172  const char* argv[] = {
6173  "foo.exe",
6174  "--gtest_throw_on_failure=0",
6175  NULL
6176  };
6177 
6178  const char* argv2[] = {
6179  "foo.exe",
6180  NULL
6181  };
6182 
6183  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6184 }
6185 
6186 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6187 // definition.
6188 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6189  const char* argv[] = {
6190  "foo.exe",
6191  "--gtest_throw_on_failure=1",
6192  NULL
6193  };
6194 
6195  const char* argv2[] = {
6196  "foo.exe",
6197  NULL
6198  };
6199 
6200  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6201 }
6202 
6203 #if GTEST_OS_WINDOWS
6204 // Tests parsing wide strings.
6205 TEST_F(InitGoogleTestTest, WideStrings) {
6206  const wchar_t* argv[] = {
6207  L"foo.exe",
6208  L"--gtest_filter=Foo*",
6209  L"--gtest_list_tests=1",
6210  L"--gtest_break_on_failure",
6211  L"--non_gtest_flag",
6212  NULL
6213  };
6214 
6215  const wchar_t* argv2[] = {
6216  L"foo.exe",
6217  L"--non_gtest_flag",
6218  NULL
6219  };
6220 
6221  Flags expected_flags;
6222  expected_flags.break_on_failure = true;
6223  expected_flags.filter = "Foo*";
6224  expected_flags.list_tests = true;
6225 
6226  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6227 }
6228 #endif // GTEST_OS_WINDOWS
6229 
6230 // Tests current_test_info() in UnitTest.
6231 class CurrentTestInfoTest : public Test {
6232  protected:
6233  // Tests that current_test_info() returns NULL before the first test in
6234  // the test case is run.
6235  static void SetUpTestCase() {
6236  // There should be no tests running at this point.
6237  const TestInfo* test_info =
6239  EXPECT_TRUE(test_info == NULL)
6240  << "There should be no tests running at this point.";
6241  }
6242 
6243  // Tests that current_test_info() returns NULL after the last test in
6244  // the test case has run.
6245  static void TearDownTestCase() {
6246  const TestInfo* test_info =
6248  EXPECT_TRUE(test_info == NULL)
6249  << "There should be no tests running at this point.";
6250  }
6251 };
6252 
6253 // Tests that current_test_info() returns TestInfo for currently running
6254 // test by checking the expected test name against the actual one.
6255 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6256  const TestInfo* test_info =
6258  ASSERT_TRUE(NULL != test_info)
6259  << "There is a test running so we should have a valid TestInfo.";
6260  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6261  << "Expected the name of the currently running test case.";
6262  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6263  << "Expected the name of the currently running test.";
6264 }
6265 
6266 // Tests that current_test_info() returns TestInfo for currently running
6267 // test by checking the expected test name against the actual one. We
6268 // use this test to see that the TestInfo object actually changed from
6269 // the previous invocation.
6270 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6271  const TestInfo* test_info =
6273  ASSERT_TRUE(NULL != test_info)
6274  << "There is a test running so we should have a valid TestInfo.";
6275  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6276  << "Expected the name of the currently running test case.";
6277  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6278  << "Expected the name of the currently running test.";
6279 }
6280 
6281 } // namespace testing
6282 
6283 // These two lines test that we can define tests in a namespace that
6284 // has the name "testing" and is nested in another namespace.
6285 namespace my_namespace {
6286 namespace testing {
6287 
6288 // Makes sure that TEST knows to use ::testing::Test instead of
6289 // ::my_namespace::testing::Test.
6290 class Test {};
6291 
6292 // Makes sure that an assertion knows to use ::testing::Message instead of
6293 // ::my_namespace::testing::Message.
6294 class Message {};
6295 
6296 // Makes sure that an assertion knows to use
6297 // ::testing::AssertionResult instead of
6298 // ::my_namespace::testing::AssertionResult.
6299 class AssertionResult {};
6300 
6301 // Tests that an assertion that should succeed works as expected.
6302 TEST(NestedTestingNamespaceTest, Success) {
6303  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6304 }
6305 
6306 // Tests that an assertion that should fail works as expected.
6307 TEST(NestedTestingNamespaceTest, Failure) {
6308  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6309  "This failure is expected.");
6310 }
6311 
6312 } // namespace testing
6313 } // namespace my_namespace
6314 
6315 // Tests that one can call superclass SetUp and TearDown methods--
6316 // that is, that they are not private.
6317 // No tests are based on this fixture; the test "passes" if it compiles
6318 // successfully.
6319 class ProtectedFixtureMethodsTest : public Test {
6320  protected:
6321  virtual void SetUp() {
6322  Test::SetUp();
6323  }
6324  virtual void TearDown() {
6325  Test::TearDown();
6326  }
6327 };
6328 
6329 // StreamingAssertionsTest tests the streaming versions of a representative
6330 // sample of assertions.
6331 TEST(StreamingAssertionsTest, Unconditional) {
6332  SUCCEED() << "expected success";
6333  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6334  "expected failure");
6335  EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6336  "expected failure");
6337 }
6338 
6339 #ifdef __BORLANDC__
6340 // Silences warnings: "Condition is always true", "Unreachable code"
6341 # pragma option push -w-ccc -w-rch
6342 #endif
6343 
6344 TEST(StreamingAssertionsTest, Truth) {
6345  EXPECT_TRUE(true) << "unexpected failure";
6346  ASSERT_TRUE(true) << "unexpected failure";
6347  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6348  "expected failure");
6349  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6350  "expected failure");
6351 }
6352 
6353 TEST(StreamingAssertionsTest, Truth2) {
6354  EXPECT_FALSE(false) << "unexpected failure";
6355  ASSERT_FALSE(false) << "unexpected failure";
6356  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6357  "expected failure");
6358  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6359  "expected failure");
6360 }
6361 
6362 #ifdef __BORLANDC__
6363 // Restores warnings after previous "#pragma option push" supressed them
6364 # pragma option pop
6365 #endif
6366 
6367 TEST(StreamingAssertionsTest, IntegerEquals) {
6368  EXPECT_EQ(1, 1) << "unexpected failure";
6369  ASSERT_EQ(1, 1) << "unexpected failure";
6370  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6371  "expected failure");
6372  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6373  "expected failure");
6374 }
6375 
6376 TEST(StreamingAssertionsTest, IntegerLessThan) {
6377  EXPECT_LT(1, 2) << "unexpected failure";
6378  ASSERT_LT(1, 2) << "unexpected failure";
6379  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6380  "expected failure");
6381  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6382  "expected failure");
6383 }
6384 
6385 TEST(StreamingAssertionsTest, StringsEqual) {
6386  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6387  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6388  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6389  "expected failure");
6390  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6391  "expected failure");
6392 }
6393 
6394 TEST(StreamingAssertionsTest, StringsNotEqual) {
6395  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6396  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6397  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6398  "expected failure");
6399  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6400  "expected failure");
6401 }
6402 
6403 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6404  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6405  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6406  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6407  "expected failure");
6408  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6409  "expected failure");
6410 }
6411 
6412 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6413  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6414  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6415  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6416  "expected failure");
6417  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6418  "expected failure");
6419 }
6420 
6421 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6422  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6423  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6424  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6425  "expected failure");
6426  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6427  "expected failure");
6428 }
6429 
6430 #if GTEST_HAS_EXCEPTIONS
6431 
6432 TEST(StreamingAssertionsTest, Throw) {
6433  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6434  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6435  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6436  "expected failure", "expected failure");
6437  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6438  "expected failure", "expected failure");
6439 }
6440 
6441 TEST(StreamingAssertionsTest, NoThrow) {
6442  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6443  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6444  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6445  "expected failure", "expected failure");
6446  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6447  "expected failure", "expected failure");
6448 }
6449 
6450 TEST(StreamingAssertionsTest, AnyThrow) {
6451  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6452  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6453  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6454  "expected failure", "expected failure");
6455  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6456  "expected failure", "expected failure");
6457 }
6458 
6459 #endif // GTEST_HAS_EXCEPTIONS
6460 
6461 // Tests that Google Test correctly decides whether to use colors in the output.
6462 
6463 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6464  GTEST_FLAG(color) = "yes";
6465 
6466  SetEnv("TERM", "xterm"); // TERM supports colors.
6467  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6468  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6469 
6470  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6471  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6472  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6473 }
6474 
6475 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6476  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6477 
6478  GTEST_FLAG(color) = "True";
6479  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6480 
6481  GTEST_FLAG(color) = "t";
6482  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6483 
6484  GTEST_FLAG(color) = "1";
6485  EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6486 }
6487 
6488 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6489  GTEST_FLAG(color) = "no";
6490 
6491  SetEnv("TERM", "xterm"); // TERM supports colors.
6492  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6493  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6494 
6495  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6496  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6497  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6498 }
6499 
6500 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6501  SetEnv("TERM", "xterm"); // TERM supports colors.
6502 
6503  GTEST_FLAG(color) = "F";
6504  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6505 
6506  GTEST_FLAG(color) = "0";
6507  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6508 
6509  GTEST_FLAG(color) = "unknown";
6510  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6511 }
6512 
6513 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6514  GTEST_FLAG(color) = "auto";
6515 
6516  SetEnv("TERM", "xterm"); // TERM supports colors.
6517  EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6518  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6519 }
6520 
6521 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6522  GTEST_FLAG(color) = "auto";
6523 
6524 #if GTEST_OS_WINDOWS
6525  // On Windows, we ignore the TERM variable as it's usually not set.
6526 
6527  SetEnv("TERM", "dumb");
6528  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6529 
6530  SetEnv("TERM", "");
6531  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6532 
6533  SetEnv("TERM", "xterm");
6534  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6535 #else
6536  // On non-Windows platforms, we rely on TERM to determine if the
6537  // terminal supports colors.
6538 
6539  SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6540  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6541 
6542  SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6543  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6544 
6545  SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6546  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6547 
6548  SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6549  EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6550 
6551  SetEnv("TERM", "xterm"); // TERM supports colors.
6552  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6553 
6554  SetEnv("TERM", "xterm-color"); // TERM supports colors.
6555  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6556 
6557  SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6558  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6559 
6560  SetEnv("TERM", "screen"); // TERM supports colors.
6561  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6562 
6563  SetEnv("TERM", "screen-256color"); // TERM supports colors.
6564  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6565 
6566  SetEnv("TERM", "linux"); // TERM supports colors.
6567  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6568 
6569  SetEnv("TERM", "cygwin"); // TERM supports colors.
6570  EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6571 #endif // GTEST_OS_WINDOWS
6572 }
6573 
6574 // Verifies that StaticAssertTypeEq works in a namespace scope.
6575 
6576 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6577 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6578  StaticAssertTypeEq<const int, const int>();
6579 
6580 // Verifies that StaticAssertTypeEq works in a class.
6581 
6582 template <typename T>
6584  public:
6585  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6586 };
6587 
6588 TEST(StaticAssertTypeEqTest, WorksInClass) {
6590 }
6591 
6592 // Verifies that StaticAssertTypeEq works inside a function.
6593 
6594 typedef int IntAlias;
6595 
6596 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6597  StaticAssertTypeEq<int, IntAlias>();
6598  StaticAssertTypeEq<int*, IntAlias*>();
6599 }
6600 
6601 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6603 
6604  // We don't have a stack walker in Google Test yet.
6605  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6606  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6607 }
6608 
6609 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6610  EXPECT_FALSE(HasNonfatalFailure());
6611 }
6612 
6613 static void FailFatally() { FAIL(); }
6614 
6615 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6616  FailFatally();
6617  const bool has_nonfatal_failure = HasNonfatalFailure();
6618  ClearCurrentTestPartResults();
6619  EXPECT_FALSE(has_nonfatal_failure);
6620 }
6621 
6622 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6623  ADD_FAILURE();
6624  const bool has_nonfatal_failure = HasNonfatalFailure();
6625  ClearCurrentTestPartResults();
6626  EXPECT_TRUE(has_nonfatal_failure);
6627 }
6628 
6629 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6630  FailFatally();
6631  ADD_FAILURE();
6632  const bool has_nonfatal_failure = HasNonfatalFailure();
6633  ClearCurrentTestPartResults();
6634  EXPECT_TRUE(has_nonfatal_failure);
6635 }
6636 
6637 // A wrapper for calling HasNonfatalFailure outside of a test body.
6640 }
6641 
6642 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6644 }
6645 
6646 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6647  ADD_FAILURE();
6648  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6649  ClearCurrentTestPartResults();
6650  EXPECT_TRUE(has_nonfatal_failure);
6651 }
6652 
6653 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6654  EXPECT_FALSE(HasFailure());
6655 }
6656 
6657 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6658  FailFatally();
6659  const bool has_failure = HasFailure();
6660  ClearCurrentTestPartResults();
6661  EXPECT_TRUE(has_failure);
6662 }
6663 
6664 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6665  ADD_FAILURE();
6666  const bool has_failure = HasFailure();
6667  ClearCurrentTestPartResults();
6668  EXPECT_TRUE(has_failure);
6669 }
6670 
6671 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6672  FailFatally();
6673  ADD_FAILURE();
6674  const bool has_failure = HasFailure();
6675  ClearCurrentTestPartResults();
6676  EXPECT_TRUE(has_failure);
6677 }
6678 
6679 // A wrapper for calling HasFailure outside of a test body.
6680 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6681 
6682 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6684 }
6685 
6686 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6687  ADD_FAILURE();
6688  const bool has_failure = HasFailureHelper();
6689  ClearCurrentTestPartResults();
6690  EXPECT_TRUE(has_failure);
6691 }
6692 
6693 class TestListener : public EmptyTestEventListener {
6694  public:
6695  TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
6696  TestListener(int* on_start_counter, bool* is_destroyed)
6697  : on_start_counter_(on_start_counter),
6698  is_destroyed_(is_destroyed) {}
6699 
6700  virtual ~TestListener() {
6701  if (is_destroyed_)
6702  *is_destroyed_ = true;
6703  }
6704 
6705  protected:
6706  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6707  if (on_start_counter_ != NULL)
6708  (*on_start_counter_)++;
6709  }
6710 
6711  private:
6712  int* on_start_counter_;
6713  bool* is_destroyed_;
6714 };
6715 
6716 // Tests the constructor.
6717 TEST(TestEventListenersTest, ConstructionWorks) {
6718  TestEventListeners listeners;
6719 
6721  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6722  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6723 }
6724 
6725 // Tests that the TestEventListeners destructor deletes all the listeners it
6726 // owns.
6727 TEST(TestEventListenersTest, DestructionWorks) {
6728  bool default_result_printer_is_destroyed = false;
6729  bool default_xml_printer_is_destroyed = false;
6730  bool extra_listener_is_destroyed = false;
6731  TestListener* default_result_printer = new TestListener(
6732  NULL, &default_result_printer_is_destroyed);
6733  TestListener* default_xml_printer = new TestListener(
6734  NULL, &default_xml_printer_is_destroyed);
6735  TestListener* extra_listener = new TestListener(
6736  NULL, &extra_listener_is_destroyed);
6737 
6738  {
6739  TestEventListeners listeners;
6741  default_result_printer);
6743  default_xml_printer);
6744  listeners.Append(extra_listener);
6745  }
6746  EXPECT_TRUE(default_result_printer_is_destroyed);
6747  EXPECT_TRUE(default_xml_printer_is_destroyed);
6748  EXPECT_TRUE(extra_listener_is_destroyed);
6749 }
6750 
6751 // Tests that a listener Append'ed to a TestEventListeners list starts
6752 // receiving events.
6753 TEST(TestEventListenersTest, Append) {
6754  int on_start_counter = 0;
6755  bool is_destroyed = false;
6756  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6757  {
6758  TestEventListeners listeners;
6759  listeners.Append(listener);
6762  EXPECT_EQ(1, on_start_counter);
6763  }
6764  EXPECT_TRUE(is_destroyed);
6765 }
6766 
6767 // Tests that listeners receive events in the order they were appended to
6768 // the list, except for *End requests, which must be received in the reverse
6769 // order.
6771  public:
6772  SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6773  : vector_(vector), id_(id) {}
6774 
6775  protected:
6776  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6777  vector_->push_back(GetEventDescription("OnTestProgramStart"));
6778  }
6779 
6780  virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6781  vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6782  }
6783 
6784  virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6785  int /*iteration*/) {
6786  vector_->push_back(GetEventDescription("OnTestIterationStart"));
6787  }
6788 
6789  virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6790  int /*iteration*/) {
6791  vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6792  }
6793 
6794  private:
6795  std::string GetEventDescription(const char* method) {
6796  Message message;
6797  message << id_ << "." << method;
6798  return message.GetString();
6799  }
6800 
6801  std::vector<std::string>* vector_;
6802  const char* const id_;
6803 
6805 };
6806 
6807 TEST(EventListenerTest, AppendKeepsOrder) {
6808  std::vector<std::string> vec;
6809  TestEventListeners listeners;
6810  listeners.Append(new SequenceTestingListener(&vec, "1st"));
6811  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6812  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6813 
6816  ASSERT_EQ(3U, vec.size());
6817  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6818  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6819  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6820 
6821  vec.clear();
6824  ASSERT_EQ(3U, vec.size());
6825  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6826  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6827  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6828 
6829  vec.clear();
6831  *UnitTest::GetInstance(), 0);
6832  ASSERT_EQ(3U, vec.size());
6833  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6834  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6835  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6836 
6837  vec.clear();
6839  *UnitTest::GetInstance(), 0);
6840  ASSERT_EQ(3U, vec.size());
6841  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6842  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6843  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6844 }
6845 
6846 // Tests that a listener removed from a TestEventListeners list stops receiving
6847 // events and is not deleted when the list is destroyed.
6848 TEST(TestEventListenersTest, Release) {
6849  int on_start_counter = 0;
6850  bool is_destroyed = false;
6851  // Although Append passes the ownership of this object to the list,
6852  // the following calls release it, and we need to delete it before the
6853  // test ends.
6854  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6855  {
6856  TestEventListeners listeners;
6857  listeners.Append(listener);
6858  EXPECT_EQ(listener, listeners.Release(listener));
6861  EXPECT_TRUE(listeners.Release(listener) == NULL);
6862  }
6863  EXPECT_EQ(0, on_start_counter);
6864  EXPECT_FALSE(is_destroyed);
6865  delete listener;
6866 }
6867 
6868 // Tests that no events are forwarded when event forwarding is disabled.
6869 TEST(EventListenerTest, SuppressEventForwarding) {
6870  int on_start_counter = 0;
6871  TestListener* listener = new TestListener(&on_start_counter, NULL);
6872 
6873  TestEventListeners listeners;
6874  listeners.Append(listener);
6880  EXPECT_EQ(0, on_start_counter);
6881 }
6882 
6883 // Tests that events generated by Google Test are not forwarded in
6884 // death test subprocesses.
6885 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6888  *GetUnitTestImpl()->listeners())) << "expected failure";},
6889  "expected failure");
6890 }
6891 
6892 // Tests that a listener installed via SetDefaultResultPrinter() starts
6893 // receiving events and is returned via default_result_printer() and that
6894 // the previous default_result_printer is removed from the list and deleted.
6895 TEST(EventListenerTest, default_result_printer) {
6896  int on_start_counter = 0;
6897  bool is_destroyed = false;
6898  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6899 
6900  TestEventListeners listeners;
6902 
6903  EXPECT_EQ(listener, listeners.default_result_printer());
6904 
6907 
6908  EXPECT_EQ(1, on_start_counter);
6909 
6910  // Replacing default_result_printer with something else should remove it
6911  // from the list and destroy it.
6913 
6914  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6915  EXPECT_TRUE(is_destroyed);
6916 
6917  // After broadcasting an event the counter is still the same, indicating
6918  // the listener is not in the list anymore.
6921  EXPECT_EQ(1, on_start_counter);
6922 }
6923 
6924 // Tests that the default_result_printer listener stops receiving events
6925 // when removed via Release and that is not owned by the list anymore.
6926 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6927  int on_start_counter = 0;
6928  bool is_destroyed = false;
6929  // Although Append passes the ownership of this object to the list,
6930  // the following calls release it, and we need to delete it before the
6931  // test ends.
6932  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6933  {
6934  TestEventListeners listeners;
6936 
6937  EXPECT_EQ(listener, listeners.Release(listener));
6938  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6939  EXPECT_FALSE(is_destroyed);
6940 
6941  // Broadcasting events now should not affect default_result_printer.
6944  EXPECT_EQ(0, on_start_counter);
6945  }
6946  // Destroying the list should not affect the listener now, too.
6947  EXPECT_FALSE(is_destroyed);
6948  delete listener;
6949 }
6950 
6951 // Tests that a listener installed via SetDefaultXmlGenerator() starts
6952 // receiving events and is returned via default_xml_generator() and that
6953 // the previous default_xml_generator is removed from the list and deleted.
6954 TEST(EventListenerTest, default_xml_generator) {
6955  int on_start_counter = 0;
6956  bool is_destroyed = false;
6957  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6958 
6959  TestEventListeners listeners;
6961 
6962  EXPECT_EQ(listener, listeners.default_xml_generator());
6963 
6966 
6967  EXPECT_EQ(1, on_start_counter);
6968 
6969  // Replacing default_xml_generator with something else should remove it
6970  // from the list and destroy it.
6972 
6973  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6974  EXPECT_TRUE(is_destroyed);
6975 
6976  // After broadcasting an event the counter is still the same, indicating
6977  // the listener is not in the list anymore.
6980  EXPECT_EQ(1, on_start_counter);
6981 }
6982 
6983 // Tests that the default_xml_generator listener stops receiving events
6984 // when removed via Release and that is not owned by the list anymore.
6985 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6986  int on_start_counter = 0;
6987  bool is_destroyed = false;
6988  // Although Append passes the ownership of this object to the list,
6989  // the following calls release it, and we need to delete it before the
6990  // test ends.
6991  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6992  {
6993  TestEventListeners listeners;
6995 
6996  EXPECT_EQ(listener, listeners.Release(listener));
6997  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6998  EXPECT_FALSE(is_destroyed);
6999 
7000  // Broadcasting events now should not affect default_xml_generator.
7003  EXPECT_EQ(0, on_start_counter);
7004  }
7005  // Destroying the list should not affect the listener now, too.
7006  EXPECT_FALSE(is_destroyed);
7007  delete listener;
7008 }
7009 
7010 // Sanity tests to ensure that the alternative, verbose spellings of
7011 // some of the macros work. We don't test them thoroughly as that
7012 // would be quite involved. Since their implementations are
7013 // straightforward, and they are rarely used, we'll just rely on the
7014 // users to tell us when they are broken.
7015 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
7016  GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
7017 
7018  // GTEST_FAIL is the same as FAIL.
7019  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7020  "An expected failure");
7021 
7022  // GTEST_ASSERT_XY is the same as ASSERT_XY.
7023 
7024  GTEST_ASSERT_EQ(0, 0);
7025  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7026  "An expected failure");
7027  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7028  "An expected failure");
7029 
7030  GTEST_ASSERT_NE(0, 1);
7031  GTEST_ASSERT_NE(1, 0);
7032  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7033  "An expected failure");
7034 
7035  GTEST_ASSERT_LE(0, 0);
7036  GTEST_ASSERT_LE(0, 1);
7037  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7038  "An expected failure");
7039 
7040  GTEST_ASSERT_LT(0, 1);
7041  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7042  "An expected failure");
7043  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7044  "An expected failure");
7045 
7046  GTEST_ASSERT_GE(0, 0);
7047  GTEST_ASSERT_GE(1, 0);
7048  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7049  "An expected failure");
7050 
7051  GTEST_ASSERT_GT(1, 0);
7052  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7053  "An expected failure");
7054  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7055  "An expected failure");
7056 }
7057 
7058 // Tests for internal utilities necessary for implementation of the universal
7059 // printing.
7060 // TODO(vladl@google.com): Find a better home for them.
7061 
7062 class ConversionHelperBase {};
7064 
7065 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
7066 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7068  const_true);
7070 }
7071 
7072 // Tests that IsAProtocolMessage<T>::value is true when T is
7073 // proto2::Message or a sub-class of it.
7074 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7077 }
7078 
7079 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7080 // ProtocolMessage nor a sub-class of it.
7081 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7084 }
7085 
7086 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7087 // equal.
7088 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7091 }
7092 
7093 // Tests that RemoveReference does not affect non-reference types.
7094 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7097 }
7098 
7099 // Tests that RemoveReference removes reference from reference types.
7100 TEST(RemoveReferenceTest, RemovesReference) {
7103 }
7104 
7105 // Tests GTEST_REMOVE_REFERENCE_.
7106 
7107 template <typename T1, typename T2>
7110 }
7111 
7112 TEST(RemoveReferenceTest, MacroVersion) {
7113  TestGTestRemoveReference<int, int>();
7114  TestGTestRemoveReference<const char, const char&>();
7115 }
7116 
7117 
7118 // Tests that RemoveConst does not affect non-const types.
7119 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7122 }
7123 
7124 // Tests that RemoveConst removes const from const types.
7125 TEST(RemoveConstTest, RemovesConst) {
7129 }
7130 
7131 // Tests GTEST_REMOVE_CONST_.
7132 
7133 template <typename T1, typename T2>
7136 }
7137 
7138 TEST(RemoveConstTest, MacroVersion) {
7139  TestGTestRemoveConst<int, int>();
7140  TestGTestRemoveConst<double&, double&>();
7141  TestGTestRemoveConst<char, const char>();
7142 }
7143 
7144 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7145 
7146 template <typename T1, typename T2>
7149 }
7150 
7151 TEST(RemoveReferenceToConstTest, Works) {
7152  TestGTestRemoveReferenceAndConst<int, int>();
7153  TestGTestRemoveReferenceAndConst<double, double&>();
7154  TestGTestRemoveReferenceAndConst<char, const char>();
7155  TestGTestRemoveReferenceAndConst<char, const char&>();
7156  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7157 }
7158 
7159 // Tests that AddReference does not affect reference types.
7160 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7163 }
7164 
7165 // Tests that AddReference adds reference to non-reference types.
7166 TEST(AddReferenceTest, AddsReference) {
7169 }
7170 
7171 // Tests GTEST_ADD_REFERENCE_.
7172 
7173 template <typename T1, typename T2>
7176 }
7177 
7178 TEST(AddReferenceTest, MacroVersion) {
7179  TestGTestAddReference<int&, int>();
7180  TestGTestAddReference<const char&, const char&>();
7181 }
7182 
7183 // Tests GTEST_REFERENCE_TO_CONST_.
7184 
7185 template <typename T1, typename T2>
7188 }
7189 
7190 TEST(GTestReferenceToConstTest, Works) {
7191  TestGTestReferenceToConst<const char&, char>();
7192  TestGTestReferenceToConst<const int&, const int>();
7193  TestGTestReferenceToConst<const double&, double>();
7194  TestGTestReferenceToConst<const std::string&, const std::string&>();
7195 }
7196 
7197 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
7198 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7201  const_false);
7202 }
7203 
7204 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7205 // be implicitly converted to T2.
7206 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7212  const ConversionHelperBase&>::value));
7214  ConversionHelperBase>::value));
7215 }
7216 
7217 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7218 // cannot be implicitly converted to T2.
7219 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7224  ConversionHelperDerived&>::value));
7225 }
7226 
7227 // Tests IsContainerTest.
7228 
7229 class NonContainer {};
7230 
7231 TEST(IsContainerTestTest, WorksForNonContainer) {
7232  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7233  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7234  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7235 }
7236 
7237 TEST(IsContainerTestTest, WorksForContainer) {
7238  EXPECT_EQ(sizeof(IsContainer),
7239  sizeof(IsContainerTest<std::vector<bool> >(0)));
7240  EXPECT_EQ(sizeof(IsContainer),
7241  sizeof(IsContainerTest<std::map<int, double> >(0)));
7242 }
7243 
7244 // Tests ArrayEq().
7245 
7246 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7247  EXPECT_TRUE(ArrayEq(5, 5L));
7248  EXPECT_FALSE(ArrayEq('a', 0));
7249 }
7250 
7251 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7252  // Note that a and b are distinct but compatible types.
7253  const int a[] = { 0, 1 };
7254  long b[] = { 0, 1 };
7255  EXPECT_TRUE(ArrayEq(a, b));
7256  EXPECT_TRUE(ArrayEq(a, 2, b));
7257 
7258  b[0] = 2;
7259  EXPECT_FALSE(ArrayEq(a, b));
7260  EXPECT_FALSE(ArrayEq(a, 1, b));
7261 }
7262 
7263 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7264  const char a[][3] = { "hi", "lo" };
7265  const char b[][3] = { "hi", "lo" };
7266  const char c[][3] = { "hi", "li" };
7267 
7268  EXPECT_TRUE(ArrayEq(a, b));
7269  EXPECT_TRUE(ArrayEq(a, 2, b));
7270 
7271  EXPECT_FALSE(ArrayEq(a, c));
7272  EXPECT_FALSE(ArrayEq(a, 2, c));
7273 }
7274 
7275 // Tests ArrayAwareFind().
7276 
7277 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7278  const char a[] = "hello";
7279  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7280  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7281 }
7282 
7283 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7284  int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7285  const int b[2] = { 2, 3 };
7286  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7287 
7288  const int c[2] = { 6, 7 };
7289  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7290 }
7291 
7292 // Tests CopyArray().
7293 
7294 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7295  int n = 0;
7296  CopyArray('a', &n);
7297  EXPECT_EQ('a', n);
7298 }
7299 
7300 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7301  const char a[3] = "hi";
7302  int b[3];
7303 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7304  CopyArray(a, &b);
7305  EXPECT_TRUE(ArrayEq(a, b));
7306 #endif
7307 
7308  int c[3];
7309  CopyArray(a, 3, c);
7310  EXPECT_TRUE(ArrayEq(a, c));
7311 }
7312 
7313 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7314  const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7315  int b[2][3];
7316 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7317  CopyArray(a, &b);
7318  EXPECT_TRUE(ArrayEq(a, b));
7319 #endif
7320 
7321  int c[2][3];
7322  CopyArray(a, 2, c);
7323  EXPECT_TRUE(ArrayEq(a, c));
7324 }
7325 
7326 // Tests NativeArray.
7327 
7328 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7329  const int a[3] = { 0, 1, 2 };
7330  NativeArray<int> na(a, 3, kReference);
7331  EXPECT_EQ(3U, na.size());
7332  EXPECT_EQ(a, na.begin());
7333 }
7334 
7335 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7336  typedef int Array[2];
7337  Array* a = new Array[1];
7338  (*a)[0] = 0;
7339  (*a)[1] = 1;
7340  NativeArray<int> na(*a, 2, kCopy);
7341  EXPECT_NE(*a, na.begin());
7342  delete[] a;
7343  EXPECT_EQ(0, na.begin()[0]);
7344  EXPECT_EQ(1, na.begin()[1]);
7345 
7346  // We rely on the heap checker to verify that na deletes the copy of
7347  // array.
7348 }
7349 
7350 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7351  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7352  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7353 
7354  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7355  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7356 }
7357 
7358 TEST(NativeArrayTest, MethodsWork) {
7359  const int a[3] = { 0, 1, 2 };
7360  NativeArray<int> na(a, 3, kCopy);
7361  ASSERT_EQ(3U, na.size());
7362  EXPECT_EQ(3, na.end() - na.begin());
7363 
7365  EXPECT_EQ(0, *it);
7366  ++it;
7367  EXPECT_EQ(1, *it);
7368  it++;
7369  EXPECT_EQ(2, *it);
7370  ++it;
7371  EXPECT_EQ(na.end(), it);
7372 
7373  EXPECT_TRUE(na == na);
7374 
7375  NativeArray<int> na2(a, 3, kReference);
7376  EXPECT_TRUE(na == na2);
7377 
7378  const int b1[3] = { 0, 1, 1 };
7379  const int b2[4] = { 0, 1, 2, 3 };
7380  EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7381  EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7382 }
7383 
7384 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7385  const char a[2][3] = { "hi", "lo" };
7386  NativeArray<char[3]> na(a, 2, kReference);
7387  ASSERT_EQ(2U, na.size());
7388  EXPECT_EQ(a, na.begin());
7389 }
7390 
7391 // Tests SkipPrefix().
7392 
7393 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7394  const char* const str = "hello";
7395 
7396  const char* p = str;
7397  EXPECT_TRUE(SkipPrefix("", &p));
7398  EXPECT_EQ(str, p);
7399 
7400  p = str;
7401  EXPECT_TRUE(SkipPrefix("hell", &p));
7402  EXPECT_EQ(str + 4, p);
7403 }
7404 
7405 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7406  const char* const str = "world";
7407 
7408  const char* p = str;
7409  EXPECT_FALSE(SkipPrefix("W", &p));
7410  EXPECT_EQ(str, p);
7411 
7412  p = str;
7413  EXPECT_FALSE(SkipPrefix("world!", &p));
7414  EXPECT_EQ(str, p);
7415 }
#define ASSERT_ANY_THROW(statement)
GTEST_API_ bool g_help_flag
#define GTEST_FAIL()
void SetDefaultResultPrinter(TestEventListener *listener)
UnitTestImpl * GetUnitTestImpl()
static void FailFatally()
static const std::vector< testing::TestPartResult > & test_part_results(const TestResult &test_result)
int GetRandomSeedFromFlag(Int32 random_seed_flag)
static void SuppressEventForwarding(TestEventListeners *listeners)
std::string GetCapturedStdout()
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
GTEST_TEST(AlternativeNameTest, Works)
#define EXPECT_FATAL_FAILURE(statement, substr)
GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms)
TYPED_TEST_CASE_P(TypeParamTest)
E GetElementOr(const std::vector< E > &v, int i, E default_value)
static Flags DeathTestUseFork(bool death_test_use_fork)
AssertionResult AssertionFailure()
int * count
const TestInfo * GetTestInfo(int i) const
#define EXPECT_NONFATAL_FAILURE(statement, substr)
static Flags StackTraceDepth(Int32 stack_trace_depth)
Environment * AddGlobalTestEnvironment(Environment *env)
#define GTEST_USE_UNPROTECTED_COMMA_
f
#define ASSERT_PRED2(pred, v1, v2)
class testing::internal::GTestFlagSaver GTEST_ATTRIBUTE_UNUSED_
static Flags Output(const char *output)
TypeWithSize< 4 >::Int Int32
const char Message[]
Definition: strings.h:102
int GetNextRandomSeed(int seed)
static const TestResult * GetTestResult(const TestInfo *test_info)
#define ASSERT_FLOAT_EQ(expected, actual)
TYPED_TEST_P(TypeParamTest, TestA)
#define ASSERT_NO_FATAL_FAILURE(statement)
static bool EndsWithCaseInsensitive(const std::string &str, const std::string &suffix)
GTEST_API_ bool ShouldUseColor(bool stdout_is_tty)
#define EXPECT_NO_FATAL_FAILURE(statement)
TypeWithSize< 4 >::UInt UInt32
TestEventListener * Release(TestEventListener *listener)
#define EXPECT_NO_THROW(statement)
GTEST_API_ bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id)
virtual void OnTestProgramStart(const UnitTest &)
#define EXPECT_STRCASEEQ(expected, actual)
XmlRpcServer s
TestEventListener * repeater()
virtual void OnTestIterationStart(const UnitTest &unit_test, int iteration)=0
FloatingPointTest< double > DoubleTest
bool operator==(T *ptr, const linked_ptr< T > &x)
static Flags BreakOnFailure(bool break_on_failure)
#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help)
#define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr)
static TestEventListener * GetRepeater(TestEventListeners *listeners)
#define EXPECT_LT(val1, val2)
#define ADD_FAILURE()
TestEventListener * default_xml_generator() const
bool SkipPrefix(const char *prefix, const char **pstr)
GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms)
#define GTEST_ASSERT_LE(val1, val2)
static const TestInfo * GetTestInfo(const char *test_name)
static Flags AlsoRunDisabledTests(bool also_run_disabled_tests)
#define ASSERT_LE(val1, val2)
REGISTER_TYPED_TEST_CASE_P(TypeParamTest, TestA, TestB)
const TestProperty & GetTestProperty(int i) const
static Flags StreamResultTo(const char *stream_result_to)
void TestGTestRemoveReferenceAndConst()
void Append(TestEventListener *listener)
static void ClearTestPartResults(TestResult *test_result)
GTEST_API_ bool ShouldShard(const char *total_shards_str, const char *shard_index_str, bool in_subprocess_for_death_test)
#define EXPECT_NEAR(val1, val2, abs_error)
GTEST_API_ std::string CodePointToUtf8(UInt32 code_point)
#define GTEST_COMPILE_ASSERT_(expr, msg)
#define EXPECT_TRUE(condition)
name
Definition: setup.py:38
#define GTEST_FLAG(name)
#define EXPECT_GT(val1, val2)
#define ASSERT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5)
int total_test_count() const
std::ostream & operator<<(std::ostream &os, const TestPartResult &result)
static void CheckFlags(const Flags &expected)
TYPED_TEST_CASE(TypedTest, MyTypes)
OStream< ChannelType > & flush(OStream< ChannelType > &os)
Definition: stream.h:147
#define SUCCEED()
#define EXPECT_STREQ(expected, actual)
#define EXPECT_STRCASENE(s1, s2)
std::string StreamableToString(const T &streamable)
virtual void SetUp()
static void TestParsingFlags(int argc1, const CharType **argv1, int argc2, const CharType **argv2, const Flags &expected, bool should_print_help)
INSTANTIATE_TYPED_TEST_CASE_P(My, TypeParamTest, MyTypes)
static void SetDefaultXmlGenerator(TestEventListeners *listeners, TestEventListener *listener)
#define EXPECT_PRED1(pred, v1)
#define ASSERT_GT(val1, val2)
internal::TimeInMillis TimeInMillis
static bool EventForwardingEnabled(const TestEventListeners &listeners)
#define ASSERT_DOUBLE_EQ(expected, actual)
bool ArrayEq(const T *lhs, size_t size, const U *rhs)
#define ASSERT_NE(val1, val2)
static bool HasNonfatalFailureHelper()
#define ASSERT_PRED1(pred, v1)
#define GTEST_ASSERT_GE(val1, val2)
#define ASSERT_THROW(statement, expected_exception)
virtual void OnTestIterationEnd(const UnitTest &unit_test, int iteration)=0
void TestGTestRemoveConst()
virtual void OnTestProgramEnd(const UnitTest &unit_test)=0
AssertionResult AssertionSuccess()
TestListener(int *on_start_counter, bool *is_destroyed)
#define EXPECT_DOUBLE_EQ(expected, actual)
#define GTEST_ASSERT_LT(val1, val2)
message
Definition: server.py:50
static bool CaseInsensitiveWideCStringEquals(const wchar_t *lhs, const wchar_t *rhs)
virtual void OnTestProgramStart(const UnitTest &)
#define EXPECT_THROW(statement, expected_exception)
void SetDefaultXmlGenerator(TestEventListener *listener)
FloatingPointTest< float > FloatTest
void TestGTestRemoveReference()
#define ASSERT_LT(val1, val2)
UInt32 Generate(UInt32 range)
#define GTEST_ASSERT_GT(val1, val2)
#define EXPECT_FALSE(condition)
std::string GetCurrentOsStackTraceExceptTop(UnitTest *, int skip_count)
#define FRIEND_TEST(test_case_name, test_name)
GTEST_API_ const TypeId kTestTypeIdInGoogleTest
static void RecordProperty(TestResult *test_result, const std::string &xml_element, const TestProperty &property)
virtual void TearDown()
TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded)
#define ASSERT_PRED_FORMAT4(pred_format, v1, v2, v3, v4)
#define EXPECT_PRED3(pred, v1, v2, v3)
void TestGTestAddReference()
void UnitTestRecordProperty(const char *key, const std::string &value)
#define ASSERT_NO_THROW(statement)
static bool HasFailureHelper()
#define EXPECT_NE(expected, actual)
static void SetDefaultResultPrinter(TestEventListeners *listeners, TestEventListener *listener)
std::string GetString() const
void TestGTestReferenceToConst()
AssertionResult IsSubstring(const char *needle_expr, const char *haystack_expr, const char *needle, const char *haystack)
#define EXPECT_GE(val1, val2)
GTEST_API_ TimeInMillis GetTimeInMillis()
#define ASSERT_TRUE(condition)
#define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr)
const char * test_case_name() const
const TestPartResult & GetTestPartResult(int index) const
#define EXPECT_LE(val1, val2)
#define ASSERT_GE(val1, val2)
const TestInfo * current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_)
static void AssertStringArrayEq(size_t size1, CharType **array1, size_t size2, CharType **array2)
#define EXPECT_ANY_THROW(statement)
GTEST_API_ std::string WideStringToUtf8(const wchar_t *str, int num_chars)
static Flags Shuffle(bool shuffle)
#define GTEST_IS_NULL_LITERAL_(x)
const TestResult & ad_hoc_test_result() const
#define ASSERT_PRED3(pred, v1, v2, v3)
int test_property_count() const
void ShuffleRange(internal::Random *random, int begin, int end, std::vector< E > *v)
#define ASSERT_EQ(val1, val2)
std::string AppendUserMessage(const std::string &gtest_msg, const Message &user_msg)
#define EXPECT_PRED_FORMAT4(pred_format, v1, v2, v3, v4)
virtual void OnTestIterationStart(const UnitTest &, int)
int CountIf(const Container &c, Predicate predicate)
#define EXPECT_PRED2(pred, v1, v2)
#define EXPECT_STRNE(s1, s2)
static Flags ThrowOnFailure(bool throw_on_failure)
virtual void OnTestProgramEnd(const UnitTest &)
#define ASSERT_STRCASENE(s1, s2)
static Flags Filter(const char *filter)
AssertionResult EqFailure(const char *expected_expression, const char *actual_expression, const std::string &expected_value, const std::string &actual_value, bool ignoring_case)
#define ADD_FAILURE_AT(file, line)
#define ASSERT_NEAR(val1, val2, abs_error)
#define EXPECT_PRED_FORMAT2(pred_format, v1, v2)
TYPED_TEST(TypedTest, TestA)
#define GTEST_ASSERT_EQ(expected, actual)
GTEST_API_ void ParseGoogleTestFlagsOnly(int *argc, char **argv)
int x_
#define GTEST_ASSERT_NE(val1, val2)
void Shuffle(internal::Random *random, std::vector< E > *v)
virtual void OnTestIterationEnd(const UnitTest &, int)
std::string GetEventDescription(const char *method)
#define GTEST_FLAG_PREFIX_
#define ASSERT_PRED_FORMAT2(pred_format, v1, v2)
virtual void OnTestProgramStart(const UnitTest &unit_test)=0
#define ASSERT_STREQ(expected, actual)
AssertionResult DoubleLE(const char *expr1, const char *expr2, double val1, double val2)
Int32 Int32FromGTestEnv(const char *flag, Int32 default_value)
const TestResult * result() const
void CopyArray(const T *from, size_t size, U *to)
AssertionResult IsNotSubstring(const char *needle_expr, const char *haystack_expr, const char *needle, const char *haystack)
static UnitTest * GetInstance()
TestEventListener * default_result_printer() const
#define EXPECT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5)
Iter ArrayAwareFind(Iter begin, Iter end, const Element &elem)
static Flags CatchExceptions(bool catch_exceptions)
#define ASSERT_STRCASEEQ(expected, actual)
TypeWithSize< 8 >::Int TimeInMillis
bool operator!=(T *ptr, const linked_ptr< T > &x)
void ForEach(const Container &c, Functor functor)
static void RecordProperty(const std::string &key, const std::string &value)
static Flags Repeat(Int32 repeat)
#define GTEST_CHECK_(condition)
#define ASSERT_PRED_FORMAT1(pred_format, v1)
GTEST_API_ Int32 Int32FromEnvOrDie(const char *env_var, Int32 default_val)
SequenceTestingListener(std::vector< std::string > *vector, const char *id)
static Flags ListTests(bool list_tests)
#define GTEST_FLAG_PREFIX_UPPER_
#define EXPECT_PRED_FORMAT1(pred_format, v1)
static std::string ShowWideCString(const wchar_t *wide_c_str)
IsContainer IsContainerTest(int, typename C::iterator *=NULL, typename C::const_iterator *=NULL)
#define EXPECT_EQ(expected, actual)
#define GTEST_SUCCEED()
#define FAIL()
#define ASSERT_STRNE(s1, s2)
static Flags RandomSeed(Int32 random_seed)
const TestCase * current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_)
static bool HasNonfatalFailure()
#define EXPECT_FLOAT_EQ(expected, actual)
#define ASSERT_FALSE(condition)
#define EXPECT_DEATH_IF_SUPPORTED(statement, regex)
GTEST_API_ bool ParseInt32Flag(const char *str, const char *flag, Int32 *value)
TEST(IsXDigitTest, WorksForNarrowAscii)
static Flags PrintTime(bool print_time)
AssertionResult FloatLE(const char *expr1, const char *expr2, float val1, float val2)
void printf(BasicWriter< Char > &w, BasicCStringRef< Char > format, ArgList args)
Definition: format.h:3723


ros_opcua_impl_freeopcua
Author(s): Denis Štogl
autogenerated on Tue Jan 19 2021 03:12:06