gmock/gtest/samples/sample1.cc
Go to the documentation of this file.
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // A sample program demonstrating using Google C++ testing framework.
31 //
32 // Author: wan@google.com (Zhanyong Wan)
33 
34 #include "sample1.h"
35 
36 // Returns n! (the factorial of n). For negative n, n! is defined to be 1.
37 int Factorial(int n) {
38  int result = 1;
39  for (int i = 1; i <= n; i++) {
40  result *= i;
41  }
42 
43  return result;
44 }
45 
46 // Returns true iff n is a prime number.
47 bool IsPrime(int n) {
48  // Trivial case 1: small numbers
49  if (n <= 1) return false;
50 
51  // Trivial case 2: even numbers
52  if (n % 2 == 0) return n == 2;
53 
54  // Now, we have that n is odd and n >= 3.
55 
56  // Try to divide n by every odd number i, starting from 3
57  for (int i = 3; ; i += 2) {
58  // We only have to try i up to the squre root of n
59  if (i > n/i) break;
60 
61  // Now, we have i <= n/i < n.
62  // If n is divisible by i, n is not prime.
63  if (n % i == 0) return false;
64  }
65 
66  // n has no integer factor in the range (1, n), and thus is prime.
67  return true;
68 }
bool IsPrime(int n)
int Factorial(int n)


ros_opcua_impl_freeopcua
Author(s): Denis Štogl
autogenerated on Tue Jan 19 2021 03:12:07