gtest-internal.h
Go to the documentation of this file.
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <set>
59 #include <string>
60 #include <vector>
61 
62 #include "gtest/gtest-message.h"
66 
67 // Due to C++ preprocessor weirdness, we need double indirection to
68 // concatenate two tokens when one of them is __LINE__. Writing
69 //
70 // foo ## __LINE__
71 //
72 // will result in the token foo__LINE__, instead of foo followed by
73 // the current line number. For more details, see
74 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
75 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
76 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
77 
78 class ProtocolMessage;
79 namespace proto2 { class Message; }
80 
81 namespace testing {
82 
83 // Forward declarations.
84 
85 class AssertionResult; // Result of an assertion.
86 class Message; // Represents a failure message.
87 class Test; // Represents a test.
88 class TestInfo; // Information about a test.
89 class TestPartResult; // Result of a test part.
90 class UnitTest; // A collection of test cases.
91 
92 template <typename T>
94 
95 namespace internal {
96 
97 struct TraceInfo; // Information about a trace point.
98 class ScopedTrace; // Implements scoped trace.
99 class TestInfoImpl; // Opaque implementation of TestInfo
100 class UnitTestImpl; // Opaque implementation of UnitTest
101 
102 // How many times InitGoogleTest() has been called.
103 GTEST_API_ extern int g_init_gtest_count;
104 
105 // The text used in failure messages to indicate the start of the
106 // stack trace.
107 GTEST_API_ extern const char kStackTraceMarker[];
108 
109 // Two overloaded helpers for checking at compile time whether an
110 // expression is a null pointer literal (i.e. NULL or any 0-valued
111 // compile-time integral constant). Their return values have
112 // different sizes, so we can use sizeof() to test which version is
113 // picked by the compiler. These helpers have no implementations, as
114 // we only need their signatures.
115 //
116 // Given IsNullLiteralHelper(x), the compiler will pick the first
117 // version if x can be implicitly converted to Secret*, and pick the
118 // second version otherwise. Since Secret is a secret and incomplete
119 // type, the only expression a user can write that has type Secret* is
120 // a null pointer literal. Therefore, we know that x is a null
121 // pointer literal if and only if the first version is picked by the
122 // compiler.
123 char IsNullLiteralHelper(Secret* p);
124 char (&IsNullLiteralHelper(...))[2]; // NOLINT
125 
126 // A compile-time bool constant that is true if and only if x is a
127 // null pointer literal (i.e. NULL or any 0-valued compile-time
128 // integral constant).
129 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
130 // We lose support for NULL detection where the compiler doesn't like
131 // passing non-POD classes through ellipsis (...).
132 # define GTEST_IS_NULL_LITERAL_(x) false
133 #else
134 # define GTEST_IS_NULL_LITERAL_(x) \
135  (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
136 #endif // GTEST_ELLIPSIS_NEEDS_POD_
137 
138 // Appends the user-supplied message to the Google-Test-generated message.
140  const std::string& gtest_msg, const Message& user_msg);
141 
142 #if GTEST_HAS_EXCEPTIONS
143 
144 // This exception is thrown by (and only by) a failed Google Test
145 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
146 // are enabled). We derive it from std::runtime_error, which is for
147 // errors presumably detectable only at run time. Since
148 // std::runtime_error inherits from std::exception, many testing
149 // frameworks know how to extract and print the message inside it.
150 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
151  public:
152  explicit GoogleTestFailureException(const TestPartResult& failure);
153 };
154 
155 #endif // GTEST_HAS_EXCEPTIONS
156 
157 // A helper class for creating scoped traces in user programs.
159  public:
160  // The c'tor pushes the given source file location and message onto
161  // a trace stack maintained by Google Test.
162  ScopedTrace(const char* file, int line, const Message& message);
163 
164  // The d'tor pops the info pushed by the c'tor.
165  //
166  // Note that the d'tor is not virtual in order to be efficient.
167  // Don't inherit from ScopedTrace!
168  ~ScopedTrace();
169 
170  private:
172 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
173  // c'tor and d'tor. Therefore it doesn't
174  // need to be used otherwise.
175 
176 namespace edit_distance {
177 // Returns the optimal edits to go from 'left' to 'right'.
178 // All edits cost the same, with replace having lower priority than
179 // add/remove.
180 // Simple implementation of the Wagner–Fischer algorithm.
181 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
183 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
184  const std::vector<size_t>& left, const std::vector<size_t>& right);
185 
186 // Same as above, but the input is represented as strings.
187 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
188  const std::vector<std::string>& left,
189  const std::vector<std::string>& right);
190 
191 // Create a diff of the input strings in Unified diff format.
192 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
193  const std::vector<std::string>& right,
194  size_t context = 2);
195 
196 } // namespace edit_distance
197 
198 // Calculate the diff between 'left' and 'right' and return it in unified diff
199 // format.
200 // If not null, stores in 'total_line_count' the total number of lines found
201 // in left + right.
203  const std::string& right,
204  size_t* total_line_count);
205 
206 // Constructs and returns the message for an equality assertion
207 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
208 //
209 // The first four parameters are the expressions used in the assertion
210 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
211 // where foo is 5 and bar is 6, we have:
212 //
213 // expected_expression: "foo"
214 // actual_expression: "bar"
215 // expected_value: "5"
216 // actual_value: "6"
217 //
218 // The ignoring_case parameter is true iff the assertion is a
219 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
220 // be inserted into the message.
221 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
222  const char* actual_expression,
223  const std::string& expected_value,
224  const std::string& actual_value,
225  bool ignoring_case);
226 
227 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
229  const AssertionResult& assertion_result,
230  const char* expression_text,
231  const char* actual_predicate_value,
232  const char* expected_predicate_value);
233 
234 // This template class represents an IEEE floating-point number
235 // (either single-precision or double-precision, depending on the
236 // template parameters).
237 //
238 // The purpose of this class is to do more sophisticated number
239 // comparison. (Due to round-off error, etc, it's very unlikely that
240 // two floating-points will be equal exactly. Hence a naive
241 // comparison by the == operation often doesn't work.)
242 //
243 // Format of IEEE floating-point:
244 //
245 // The most-significant bit being the leftmost, an IEEE
246 // floating-point looks like
247 //
248 // sign_bit exponent_bits fraction_bits
249 //
250 // Here, sign_bit is a single bit that designates the sign of the
251 // number.
252 //
253 // For float, there are 8 exponent bits and 23 fraction bits.
254 //
255 // For double, there are 11 exponent bits and 52 fraction bits.
256 //
257 // More details can be found at
258 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
259 //
260 // Template parameter:
261 //
262 // RawType: the raw floating-point type (either float or double)
263 template <typename RawType>
265  public:
266  // Defines the unsigned integer type that has the same size as the
267  // floating point number.
269 
270  // Constants.
271 
272  // # of bits in a number.
273  static const size_t kBitCount = 8*sizeof(RawType);
274 
275  // # of fraction bits in a number.
276  static const size_t kFractionBitCount =
277  std::numeric_limits<RawType>::digits - 1;
278 
279  // # of exponent bits in a number.
280  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
281 
282  // The mask for the sign bit.
283  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
284 
285  // The mask for the fraction bits.
286  static const Bits kFractionBitMask =
287  ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
288 
289  // The mask for the exponent bits.
290  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
291 
292  // How many ULP's (Units in the Last Place) we want to tolerate when
293  // comparing two numbers. The larger the value, the more error we
294  // allow. A 0 value means that two numbers must be exactly the same
295  // to be considered equal.
296  //
297  // The maximum error of a single floating-point operation is 0.5
298  // units in the last place. On Intel CPU's, all floating-point
299  // calculations are done with 80-bit precision, while double has 64
300  // bits. Therefore, 4 should be enough for ordinary use.
301  //
302  // See the following article for more details on ULP:
303  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
304  static const size_t kMaxUlps = 4;
305 
306  // Constructs a FloatingPoint from a raw floating-point number.
307  //
308  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
309  // around may change its bits, although the new value is guaranteed
310  // to be also a NAN. Therefore, don't expect this constructor to
311  // preserve the bits in x when x is a NAN.
312  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
313 
314  // Static methods
315 
316  // Reinterprets a bit pattern as a floating-point number.
317  //
318  // This function is needed to test the AlmostEquals() method.
319  static RawType ReinterpretBits(const Bits bits) {
320  FloatingPoint fp(0);
321  fp.u_.bits_ = bits;
322  return fp.u_.value_;
323  }
324 
325  // Returns the floating-point number that represent positive infinity.
326  static RawType Infinity() {
327  return ReinterpretBits(kExponentBitMask);
328  }
329 
330  // Returns the maximum representable finite floating-point number.
331  static RawType Max();
332 
333  // Non-static methods
334 
335  // Returns the bits that represents this number.
336  const Bits &bits() const { return u_.bits_; }
337 
338  // Returns the exponent bits of this number.
339  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
340 
341  // Returns the fraction bits of this number.
342  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
343 
344  // Returns the sign bit of this number.
345  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
346 
347  // Returns true iff this is NAN (not a number).
348  bool is_nan() const {
349  // It's a NAN if the exponent bits are all ones and the fraction
350  // bits are not entirely zeros.
351  return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
352  }
353 
354  // Returns true iff this number is at most kMaxUlps ULP's away from
355  // rhs. In particular, this function:
356  //
357  // - returns false if either number is (or both are) NAN.
358  // - treats really large numbers as almost equal to infinity.
359  // - thinks +0.0 and -0.0 are 0 DLP's apart.
360  bool AlmostEquals(const FloatingPoint& rhs) const {
361  // The IEEE standard says that any comparison operation involving
362  // a NAN must return false.
363  if (is_nan() || rhs.is_nan()) return false;
364 
365  return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
366  <= kMaxUlps;
367  }
368 
369  private:
370  // The data type used to store the actual floating-point number.
372  RawType value_; // The raw floating-point number.
373  Bits bits_; // The bits that represent the number.
374  };
375 
376  // Converts an integer from the sign-and-magnitude representation to
377  // the biased representation. More precisely, let N be 2 to the
378  // power of (kBitCount - 1), an integer x is represented by the
379  // unsigned number x + N.
380  //
381  // For instance,
382  //
383  // -N + 1 (the most negative number representable using
384  // sign-and-magnitude) is represented by 1;
385  // 0 is represented by N; and
386  // N - 1 (the biggest number representable using
387  // sign-and-magnitude) is represented by 2N - 1.
388  //
389  // Read http://en.wikipedia.org/wiki/Signed_number_representations
390  // for more details on signed number representations.
391  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
392  if (kSignBitMask & sam) {
393  // sam represents a negative number.
394  return ~sam + 1;
395  } else {
396  // sam represents a positive number.
397  return kSignBitMask | sam;
398  }
399  }
400 
401  // Given two numbers in the sign-and-magnitude representation,
402  // returns the distance between them as an unsigned number.
403  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
404  const Bits &sam2) {
405  const Bits biased1 = SignAndMagnitudeToBiased(sam1);
406  const Bits biased2 = SignAndMagnitudeToBiased(sam2);
407  return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
408  }
409 
411 };
412 
413 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
414 // macro defined by <windows.h>.
415 template <>
416 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
417 template <>
418 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
419 
420 // Typedefs the instances of the FloatingPoint template class that we
421 // care to use.
424 
425 // In order to catch the mistake of putting tests that use different
426 // test fixture classes in the same test case, we need to assign
427 // unique IDs to fixture classes and compare them. The TypeId type is
428 // used to hold such IDs. The user should treat TypeId as an opaque
429 // type: the only operation allowed on TypeId values is to compare
430 // them for equality using the == operator.
431 typedef const void* TypeId;
432 
433 template <typename T>
435  public:
436  // dummy_ must not have a const type. Otherwise an overly eager
437  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
438  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
439  static bool dummy_;
440 };
441 
442 template <typename T>
443 bool TypeIdHelper<T>::dummy_ = false;
444 
445 // GetTypeId<T>() returns the ID of type T. Different values will be
446 // returned for different types. Calling the function twice with the
447 // same type argument is guaranteed to return the same ID.
448 template <typename T>
449 TypeId GetTypeId() {
450  // The compiler is required to allocate a different
451  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
452  // the template. Therefore, the address of dummy_ is guaranteed to
453  // be unique.
454  return &(TypeIdHelper<T>::dummy_);
455 }
456 
457 // Returns the type ID of ::testing::Test. Always call this instead
458 // of GetTypeId< ::testing::Test>() to get the type ID of
459 // ::testing::Test, as the latter may give the wrong result due to a
460 // suspected linker bug when compiling Google Test as a Mac OS X
461 // framework.
462 GTEST_API_ TypeId GetTestTypeId();
463 
464 // Defines the abstract factory interface that creates instances
465 // of a Test object.
467  public:
468  virtual ~TestFactoryBase() {}
469 
470  // Creates a test instance to run. The instance is both created and destroyed
471  // within TestInfoImpl::Run()
472  virtual Test* CreateTest() = 0;
473 
474  protected:
476 
477  private:
479 };
480 
481 // This class provides implementation of TeastFactoryBase interface.
482 // It is used in TEST and TEST_F macros.
483 template <class TestClass>
485  public:
486  virtual Test* CreateTest() { return new TestClass; }
487 };
488 
489 #if GTEST_OS_WINDOWS
490 
491 // Predicate-formatters for implementing the HRESULT checking macros
492 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
493 // We pass a long instead of HRESULT to avoid causing an
494 // include dependency for the HRESULT type.
495 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
496  long hr); // NOLINT
497 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
498  long hr); // NOLINT
499 
500 #endif // GTEST_OS_WINDOWS
501 
502 // Types of SetUpTestCase() and TearDownTestCase() functions.
503 typedef void (*SetUpTestCaseFunc)();
504 typedef void (*TearDownTestCaseFunc)();
505 
506 // Creates a new TestInfo object and registers it with Google Test;
507 // returns the created object.
508 //
509 // Arguments:
510 //
511 // test_case_name: name of the test case
512 // name: name of the test
513 // type_param the name of the test's type parameter, or NULL if
514 // this is not a typed or a type-parameterized test.
515 // value_param text representation of the test's value parameter,
516 // or NULL if this is not a type-parameterized test.
517 // fixture_class_id: ID of the test fixture class
518 // set_up_tc: pointer to the function that sets up the test case
519 // tear_down_tc: pointer to the function that tears down the test case
520 // factory: pointer to the factory that creates a test object.
521 // The newly created TestInfo instance will assume
522 // ownership of the factory object.
524  const char* test_case_name,
525  const char* name,
526  const char* type_param,
527  const char* value_param,
528  TypeId fixture_class_id,
529  SetUpTestCaseFunc set_up_tc,
530  TearDownTestCaseFunc tear_down_tc,
531  TestFactoryBase* factory);
532 
533 // If *pstr starts with the given prefix, modifies *pstr to be right
534 // past the prefix and returns true; otherwise leaves *pstr unchanged
535 // and returns false. None of pstr, *pstr, and prefix can be NULL.
536 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
537 
538 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
539 
540 // State of the definition of a type-parameterized test case.
541 class GTEST_API_ TypedTestCasePState {
542  public:
543  TypedTestCasePState() : registered_(false) {}
544 
545  // Adds the given test name to defined_test_names_ and return true
546  // if the test case hasn't been registered; otherwise aborts the
547  // program.
548  bool AddTestName(const char* file, int line, const char* case_name,
549  const char* test_name) {
550  if (registered_) {
551  fprintf(stderr, "%s Test %s must be defined before "
552  "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
553  FormatFileLocation(file, line).c_str(), test_name, case_name);
554  fflush(stderr);
555  posix::Abort();
556  }
557  defined_test_names_.insert(test_name);
558  return true;
559  }
560 
561  // Verifies that registered_tests match the test names in
562  // defined_test_names_; returns registered_tests if successful, or
563  // aborts the program otherwise.
564  const char* VerifyRegisteredTestNames(
565  const char* file, int line, const char* registered_tests);
566 
567  private:
568  bool registered_;
569  ::std::set<const char*> defined_test_names_;
570 };
571 
572 // Skips to the first non-space char after the first comma in 'str';
573 // returns NULL if no comma is found in 'str'.
574 inline const char* SkipComma(const char* str) {
575  const char* comma = strchr(str, ',');
576  if (comma == NULL) {
577  return NULL;
578  }
579  while (IsSpace(*(++comma))) {}
580  return comma;
581 }
582 
583 // Returns the prefix of 'str' before the first comma in it; returns
584 // the entire string if it contains no comma.
585 inline std::string GetPrefixUntilComma(const char* str) {
586  const char* comma = strchr(str, ',');
587  return comma == NULL ? str : std::string(str, comma);
588 }
589 
590 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
591 // registers a list of type-parameterized tests with Google Test. The
592 // return value is insignificant - we just need to return something
593 // such that we can call this function in a namespace scope.
594 //
595 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
596 // template parameter. It's defined in gtest-type-util.h.
597 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
598 class TypeParameterizedTest {
599  public:
600  // 'index' is the index of the test in the type list 'Types'
601  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
602  // Types). Valid values for 'index' are [0, N - 1] where N is the
603  // length of Types.
604  static bool Register(const char* prefix, const char* case_name,
605  const char* test_names, int index) {
606  typedef typename Types::Head Type;
607  typedef Fixture<Type> FixtureClass;
608  typedef typename GTEST_BIND_(TestSel, Type) TestClass;
609 
610  // First, registers the first type-parameterized test in the type
611  // list.
613  (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
614  + StreamableToString(index)).c_str(),
615  StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
616  GetTypeName<Type>().c_str(),
617  NULL, // No value parameter.
618  GetTypeId<FixtureClass>(),
619  TestClass::SetUpTestCase,
620  TestClass::TearDownTestCase,
621  new TestFactoryImpl<TestClass>);
622 
623  // Next, recurses (at compile time) with the tail of the type list.
624  return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
625  ::Register(prefix, case_name, test_names, index + 1);
626  }
627 };
628 
629 // The base case for the compile time recursion.
630 template <GTEST_TEMPLATE_ Fixture, class TestSel>
631 class TypeParameterizedTest<Fixture, TestSel, Types0> {
632  public:
633  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
634  const char* /*test_names*/, int /*index*/) {
635  return true;
636  }
637 };
638 
639 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
640 // registers *all combinations* of 'Tests' and 'Types' with Google
641 // Test. The return value is insignificant - we just need to return
642 // something such that we can call this function in a namespace scope.
643 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
644 class TypeParameterizedTestCase {
645  public:
646  static bool Register(const char* prefix, const char* case_name,
647  const char* test_names) {
648  typedef typename Tests::Head Head;
649 
650  // First, register the first test in 'Test' for each type in 'Types'.
651  TypeParameterizedTest<Fixture, Head, Types>::Register(
652  prefix, case_name, test_names, 0);
653 
654  // Next, recurses (at compile time) with the tail of the test list.
655  return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
656  ::Register(prefix, case_name, SkipComma(test_names));
657  }
658 };
659 
660 // The base case for the compile time recursion.
661 template <GTEST_TEMPLATE_ Fixture, typename Types>
662 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
663  public:
664  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
665  const char* /*test_names*/) {
666  return true;
667  }
668 };
669 
670 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
671 
672 // Returns the current OS stack trace as an std::string.
673 //
674 // The maximum number of stack frames to be included is specified by
675 // the gtest_stack_trace_depth flag. The skip_count parameter
676 // specifies the number of top frames to be skipped, which doesn't
677 // count against the number of frames to be included.
678 //
679 // For example, if Foo() calls Bar(), which in turn calls
680 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
681 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
683  UnitTest* unit_test, int skip_count);
684 
685 // Helpers for suppressing warnings on unreachable code or constant
686 // condition.
687 
688 // Always returns true.
689 GTEST_API_ bool AlwaysTrue();
690 
691 // Always returns false.
692 inline bool AlwaysFalse() { return !AlwaysTrue(); }
693 
694 // Helper for suppressing false warning from Clang on a const char*
695 // variable declared in a conditional expression always being NULL in
696 // the else branch.
698  ConstCharPtr(const char* str) : value(str) {}
699  operator bool() const { return true; }
700  const char* value;
701 };
702 
703 // A simple Linear Congruential Generator for generating random
704 // numbers with a uniform distribution. Unlike rand() and srand(), it
705 // doesn't use global state (and therefore can't interfere with user
706 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
707 // but it's good enough for our purposes.
709  public:
710  static const UInt32 kMaxRange = 1u << 31;
711 
712  explicit Random(UInt32 seed) : state_(seed) {}
713 
714  void Reseed(UInt32 seed) { state_ = seed; }
715 
716  // Generates a random number from [0, range). Crashes if 'range' is
717  // 0 or greater than kMaxRange.
718  UInt32 Generate(UInt32 range);
719 
720  private:
723 };
724 
725 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
726 // compiler error iff T1 and T2 are different types.
727 template <typename T1, typename T2>
729 
730 template <typename T>
732 };
733 
734 // Removes the reference from a type if it is a reference type,
735 // otherwise leaves it unchanged. This is the same as
736 // tr1::remove_reference, which is not widely available yet.
737 template <typename T>
738 struct RemoveReference { typedef T type; }; // NOLINT
739 template <typename T>
740 struct RemoveReference<T&> { typedef T type; }; // NOLINT
741 
742 // A handy wrapper around RemoveReference that works when the argument
743 // T depends on template parameters.
744 #define GTEST_REMOVE_REFERENCE_(T) \
745  typename ::testing::internal::RemoveReference<T>::type
746 
747 // Removes const from a type if it is a const type, otherwise leaves
748 // it unchanged. This is the same as tr1::remove_const, which is not
749 // widely available yet.
750 template <typename T>
751 struct RemoveConst { typedef T type; }; // NOLINT
752 template <typename T>
753 struct RemoveConst<const T> { typedef T type; }; // NOLINT
754 
755 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
756 // definition to fail to remove the const in 'const int[3]' and 'const
757 // char[3][4]'. The following specialization works around the bug.
758 template <typename T, size_t N>
759 struct RemoveConst<const T[N]> {
760  typedef typename RemoveConst<T>::type type[N];
761 };
762 
763 #if defined(_MSC_VER) && _MSC_VER < 1400
764 // This is the only specialization that allows VC++ 7.1 to remove const in
765 // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
766 // and thus needs to be conditionally compiled.
767 template <typename T, size_t N>
768 struct RemoveConst<T[N]> {
769  typedef typename RemoveConst<T>::type type[N];
770 };
771 #endif
772 
773 // A handy wrapper around RemoveConst that works when the argument
774 // T depends on template parameters.
775 #define GTEST_REMOVE_CONST_(T) \
776  typename ::testing::internal::RemoveConst<T>::type
777 
778 // Turns const U&, U&, const U, and U all into U.
779 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
780  GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
781 
782 // Adds reference to a type if it is not a reference type,
783 // otherwise leaves it unchanged. This is the same as
784 // tr1::add_reference, which is not widely available yet.
785 template <typename T>
786 struct AddReference { typedef T& type; }; // NOLINT
787 template <typename T>
788 struct AddReference<T&> { typedef T& type; }; // NOLINT
789 
790 // A handy wrapper around AddReference that works when the argument T
791 // depends on template parameters.
792 #define GTEST_ADD_REFERENCE_(T) \
793  typename ::testing::internal::AddReference<T>::type
794 
795 // Adds a reference to const on top of T as necessary. For example,
796 // it transforms
797 //
798 // char ==> const char&
799 // const char ==> const char&
800 // char& ==> const char&
801 // const char& ==> const char&
802 //
803 // The argument T must depend on some template parameters.
804 #define GTEST_REFERENCE_TO_CONST_(T) \
805  GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
806 
807 // ImplicitlyConvertible<From, To>::value is a compile-time bool
808 // constant that's true iff type From can be implicitly converted to
809 // type To.
810 template <typename From, typename To>
812  private:
813  // We need the following helper functions only for their types.
814  // They have no implementations.
815 
816  // MakeFrom() is an expression whose type is From. We cannot simply
817  // use From(), as the type From may not have a public default
818  // constructor.
819  static typename AddReference<From>::type MakeFrom();
820 
821  // These two functions are overloaded. Given an expression
822  // Helper(x), the compiler will pick the first version if x can be
823  // implicitly converted to type To; otherwise it will pick the
824  // second version.
825  //
826  // The first version returns a value of size 1, and the second
827  // version returns a value of size 2. Therefore, by checking the
828  // size of Helper(x), which can be done at compile time, we can tell
829  // which version of Helper() is used, and hence whether x can be
830  // implicitly converted to type To.
831  static char Helper(To);
832  static char (&Helper(...))[2]; // NOLINT
833 
834  // We have to put the 'public' section after the 'private' section,
835  // or MSVC refuses to compile the code.
836  public:
837 #if defined(__BORLANDC__)
838  // C++Builder cannot use member overload resolution during template
839  // instantiation. The simplest workaround is to use its C++0x type traits
840  // functions (C++Builder 2009 and above only).
841  static const bool value = __is_convertible(From, To);
842 #else
843  // MSVC warns about implicitly converting from double to int for
844  // possible loss of data, so we need to temporarily disable the
845  // warning.
847  static const bool value =
848  sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
850 #endif // __BORLANDC__
851 };
852 template <typename From, typename To>
854 
855 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
856 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
857 // of those.
858 template <typename T>
860  : public bool_constant<
861  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
862  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
863 };
864 
865 // When the compiler sees expression IsContainerTest<C>(0), if C is an
866 // STL-style container class, the first overload of IsContainerTest
867 // will be viable (since both C::iterator* and C::const_iterator* are
868 // valid types and NULL can be implicitly converted to them). It will
869 // be picked over the second overload as 'int' is a perfect match for
870 // the type of argument 0. If C::iterator or C::const_iterator is not
871 // a valid type, the first overload is not viable, and the second
872 // overload will be picked. Therefore, we can determine whether C is
873 // a container class by checking the type of IsContainerTest<C>(0).
874 // The value of the expression is insignificant.
875 //
876 // Note that we look for both C::iterator and C::const_iterator. The
877 // reason is that C++ injects the name of a class as a member of the
878 // class itself (e.g. you can refer to class iterator as either
879 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
880 // only, for example, we would mistakenly think that a class named
881 // iterator is an STL container.
882 //
883 // Also note that the simpler approach of overloading
884 // IsContainerTest(typename C::const_iterator*) and
885 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
886 typedef int IsContainer;
887 template <class C>
888 IsContainer IsContainerTest(int /* dummy */,
889  typename C::iterator* /* it */ = NULL,
890  typename C::const_iterator* /* const_it */ = NULL) {
891  return 0;
892 }
893 
894 typedef char IsNotContainer;
895 template <class C>
896 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
897 
898 // EnableIf<condition>::type is void when 'Cond' is true, and
899 // undefined when 'Cond' is false. To use SFINAE to make a function
900 // overload only apply when a particular expression is true, add
901 // "typename EnableIf<expression>::type* = 0" as the last parameter.
902 template<bool> struct EnableIf;
903 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
904 
905 // Utilities for native arrays.
906 
907 // ArrayEq() compares two k-dimensional native arrays using the
908 // elements' operator==, where k can be any integer >= 0. When k is
909 // 0, ArrayEq() degenerates into comparing a single pair of values.
910 
911 template <typename T, typename U>
912 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
913 
914 // This generic version is used when k is 0.
915 template <typename T, typename U>
916 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
917 
918 // This overload is used when k >= 1.
919 template <typename T, typename U, size_t N>
920 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
921  return internal::ArrayEq(lhs, N, rhs);
922 }
923 
924 // This helper reduces code bloat. If we instead put its logic inside
925 // the previous ArrayEq() function, arrays with different sizes would
926 // lead to different copies of the template code.
927 template <typename T, typename U>
928 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
929  for (size_t i = 0; i != size; i++) {
930  if (!internal::ArrayEq(lhs[i], rhs[i]))
931  return false;
932  }
933  return true;
934 }
935 
936 // Finds the first element in the iterator range [begin, end) that
937 // equals elem. Element may be a native array type itself.
938 template <typename Iter, typename Element>
939 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
940  for (Iter it = begin; it != end; ++it) {
941  if (internal::ArrayEq(*it, elem))
942  return it;
943  }
944  return end;
945 }
946 
947 // CopyArray() copies a k-dimensional native array using the elements'
948 // operator=, where k can be any integer >= 0. When k is 0,
949 // CopyArray() degenerates into copying a single value.
950 
951 template <typename T, typename U>
952 void CopyArray(const T* from, size_t size, U* to);
953 
954 // This generic version is used when k is 0.
955 template <typename T, typename U>
956 inline void CopyArray(const T& from, U* to) { *to = from; }
957 
958 // This overload is used when k >= 1.
959 template <typename T, typename U, size_t N>
960 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
961  internal::CopyArray(from, N, *to);
962 }
963 
964 // This helper reduces code bloat. If we instead put its logic inside
965 // the previous CopyArray() function, arrays with different sizes
966 // would lead to different copies of the template code.
967 template <typename T, typename U>
968 void CopyArray(const T* from, size_t size, U* to) {
969  for (size_t i = 0; i != size; i++) {
970  internal::CopyArray(from[i], to + i);
971  }
972 }
973 
974 // The relation between an NativeArray object (see below) and the
975 // native array it represents.
976 // We use 2 different structs to allow non-copyable types to be used, as long
977 // as RelationToSourceReference() is passed.
980 
981 // Adapts a native array to a read-only STL-style container. Instead
982 // of the complete STL container concept, this adaptor only implements
983 // members useful for Google Mock's container matchers. New members
984 // should be added as needed. To simplify the implementation, we only
985 // support Element being a raw type (i.e. having no top-level const or
986 // reference modifier). It's the client's responsibility to satisfy
987 // this requirement. Element can be an array type itself (hence
988 // multi-dimensional arrays are supported).
989 template <typename Element>
990 class NativeArray {
991  public:
992  // STL-style container typedefs.
993  typedef Element value_type;
994  typedef Element* iterator;
995  typedef const Element* const_iterator;
996 
997  // Constructs from a native array. References the source.
998  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
999  InitRef(array, count);
1000  }
1001 
1002  // Constructs from a native array. Copies the source.
1003  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1004  InitCopy(array, count);
1005  }
1006 
1007  // Copy constructor.
1008  NativeArray(const NativeArray& rhs) {
1009  (this->*rhs.clone_)(rhs.array_, rhs.size_);
1010  }
1011 
1013  if (clone_ != &NativeArray::InitRef)
1014  delete[] array_;
1015  }
1016 
1017  // STL-style container methods.
1018  size_t size() const { return size_; }
1019  const_iterator begin() const { return array_; }
1020  const_iterator end() const { return array_ + size_; }
1021  bool operator==(const NativeArray& rhs) const {
1022  return size() == rhs.size() &&
1023  ArrayEq(begin(), size(), rhs.begin());
1024  }
1025 
1026  private:
1027  enum {
1028  kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1029  Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1030  };
1031 
1032  // Initializes this object with a copy of the input.
1033  void InitCopy(const Element* array, size_t a_size) {
1034  Element* const copy = new Element[a_size];
1035  CopyArray(array, a_size, copy);
1036  array_ = copy;
1037  size_ = a_size;
1038  clone_ = &NativeArray::InitCopy;
1039  }
1040 
1041  // Initializes this object with a reference of the input.
1042  void InitRef(const Element* array, size_t a_size) {
1043  array_ = array;
1044  size_ = a_size;
1045  clone_ = &NativeArray::InitRef;
1046  }
1047 
1048  const Element* array_;
1049  size_t size_;
1050  void (NativeArray::*clone_)(const Element*, size_t);
1051 
1053 };
1054 
1055 } // namespace internal
1056 } // namespace testing
1057 
1058 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1059  ::testing::internal::AssertHelper(result_type, file, line, message) \
1060  = ::testing::Message()
1061 
1062 #define GTEST_MESSAGE_(message, result_type) \
1063  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1064 
1065 #define GTEST_FATAL_FAILURE_(message) \
1066  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1067 
1068 #define GTEST_NONFATAL_FAILURE_(message) \
1069  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1070 
1071 #define GTEST_SUCCESS_(message) \
1072  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1073 
1074 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1075 // statement if it returns or throws (or doesn't return or throw in some
1076 // situations).
1077 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1078  if (::testing::internal::AlwaysTrue()) { statement; }
1079 
1080 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1081  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1082  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1083  bool gtest_caught_expected = false; \
1084  try { \
1085  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1086  } \
1087  catch (expected_exception const&) { \
1088  gtest_caught_expected = true; \
1089  } \
1090  catch (...) { \
1091  gtest_msg.value = \
1092  "Expected: " #statement " throws an exception of type " \
1093  #expected_exception ".\n Actual: it throws a different type."; \
1094  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1095  } \
1096  if (!gtest_caught_expected) { \
1097  gtest_msg.value = \
1098  "Expected: " #statement " throws an exception of type " \
1099  #expected_exception ".\n Actual: it throws nothing."; \
1100  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1101  } \
1102  } else \
1103  GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1104  fail(gtest_msg.value)
1105 
1106 #define GTEST_TEST_NO_THROW_(statement, fail) \
1107  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1108  if (::testing::internal::AlwaysTrue()) { \
1109  try { \
1110  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1111  } \
1112  catch (...) { \
1113  goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1114  } \
1115  } else \
1116  GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1117  fail("Expected: " #statement " doesn't throw an exception.\n" \
1118  " Actual: it throws.")
1119 
1120 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1121  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1122  if (::testing::internal::AlwaysTrue()) { \
1123  bool gtest_caught_any = false; \
1124  try { \
1125  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1126  } \
1127  catch (...) { \
1128  gtest_caught_any = true; \
1129  } \
1130  if (!gtest_caught_any) { \
1131  goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1132  } \
1133  } else \
1134  GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1135  fail("Expected: " #statement " throws an exception.\n" \
1136  " Actual: it doesn't.")
1137 
1138 
1139 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1140 // either a boolean expression or an AssertionResult. text is a textual
1141 // represenation of expression as it was passed into the EXPECT_TRUE.
1142 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1143  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1144  if (const ::testing::AssertionResult gtest_ar_ = \
1145  ::testing::AssertionResult(expression)) \
1146  ; \
1147  else \
1148  fail(::testing::internal::GetBoolAssertionFailureMessage(\
1149  gtest_ar_, text, #actual, #expected).c_str())
1150 
1151 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1152  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1153  if (::testing::internal::AlwaysTrue()) { \
1154  ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1155  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1156  if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1157  goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1158  } \
1159  } else \
1160  GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1161  fail("Expected: " #statement " doesn't generate new fatal " \
1162  "failures in the current thread.\n" \
1163  " Actual: it does.")
1164 
1165 // Expands to the name of the class that implements the given test.
1166 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1167  test_case_name##_##test_name##_Test
1168 
1169 // Helper macro for defining tests.
1170 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1171 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1172  public:\
1173  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1174  private:\
1175  virtual void TestBody();\
1176  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1177  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1178  GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1179 };\
1180 \
1181 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1182  ::test_info_ =\
1183  ::testing::internal::MakeAndRegisterTestInfo(\
1184  #test_case_name, #test_name, NULL, NULL, \
1185  (parent_id), \
1186  parent_class::SetUpTestCase, \
1187  parent_class::TearDownTestCase, \
1188  new ::testing::internal::TestFactoryImpl<\
1189  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1190 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1191 
1192 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1193 
bool operator==(const NativeArray &rhs) const
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2)
#define false
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(UnitTest *unit_test, int skip_count)
Definition: gtest.cc:4922
#define GTEST_DISABLE_MSC_WARNINGS_POP_()
Definition: gtest-port.h:363
class GTEST_API_ testing::internal::ScopedTrace GTEST_ATTRIBUTE_UNUSED_
static RawType ReinterpretBits(const Bits bits)
::std::string PrintToString(const T &value)
IsNotContainer IsContainerTest(long)
GTEST_API_ int g_init_gtest_count
Definition: gtest.cc:321
GTEST_API_::std::string FormatFileLocation(const char *file, int line)
Definition: gtest-port.cc:840
void InitRef(const Element *array, size_t a_size)
::std::string string
Definition: gtest-port.h:1129
void(NativeArray::* clone_)(const Element *, size_t)
NativeArray(const Element *array, size_t count, RelationToSourceReference)
const_iterator begin() const
GTEST_API_ bool SkipPrefix(const char *prefix, const char **pstr)
Definition: gtest.cc:4950
#define GTEST_API_
Definition: gtest-port.h:966
GTEST_API_ TestInfo * MakeAndRegisterTestInfo(const char *test_case_name, const char *name, const char *type_param, const char *value_param, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase *factory)
Definition: gtest.cc:2502
const char ** p
Definition: unit1394.c:76
GTEST_API_ std::vector< EditType > CalculateOptimalEdits(const std::vector< std::string > &left, const std::vector< std::string > &right)
Definition: gtest.cc:1067
#define GTEST_DISALLOW_ASSIGN_(type)
Definition: gtest-port.h:901
unsigned int i
Definition: unit1303.c:79
std::string StreamableToString(const T &streamable)
static srvr_sockaddr_union_t from
Definition: tftpd.c:197
std::string GetTypeName()
TypeWithSize< 4 >::UInt UInt32
Definition: gtest-port.h:2437
const void * TypeId
bool IsSpace(char ch)
Definition: gtest-port.h:2205
GTEST_API_ TypeId GetTestTypeId()
Definition: gtest.cc:604
void CopyArray(const T(&from)[N], U(*to)[N])
const char * str
Definition: unit1398.c:33
FloatingPoint< float > Float
FloatingPoint< double > Double
curl_easy_setopt expects a curl_off_t argument for this option curl_easy_setopt expects a curl_write_callback argument for this option curl_easy_setopt expects a curl_ioctl_callback argument for this option curl_easy_setopt expects a curl_opensocket_callback argument for this option curl_easy_setopt expects a curl_debug_callback argument for this option curl_easy_setopt expects a curl_conv_callback argument for this option curl_easy_setopt expects a private data pointer as argument for this option curl_easy_setopt expects a FILE *argument for this option curl_easy_setopt expects a struct curl_httppost *argument for this option curl_easy_setopt expects a struct curl_slist *argument for this option curl_easy_getinfo expects a pointer to char *for this info curl_easy_getinfo expects a pointer to double for this info curl_easy_getinfo expects a pointer to struct curl_tlssessioninfo *for this info curl_easy_getinfo expects a pointer to curl_socket_t for this info size_t
#define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings)
Definition: gtest-port.h:362
void Reseed(UInt32 seed)
GTEST_API_ bool AlwaysTrue()
Definition: gtest.cc:4937
void(* SetUpTestCaseFunc)()
bool AlmostEquals(const FloatingPoint &rhs) const
NativeArray(const Element *array, size_t count, RelationToSourceCopy)
NativeArray(const NativeArray &rhs)
void(* TearDownTestCaseFunc)()
static Bits SignAndMagnitudeToBiased(const Bits &sam)
GTEST_API_ const char kStackTraceMarker[]
Definition: gtest.cc:183
#define true
GTEST_API_ std::string AppendUserMessage(const std::string &gtest_msg, const Message &user_msg)
Definition: gtest.cc:1964
GTEST_API_ std::string DiffStrings(const std::string &left, const std::string &right, size_t *total_line_count)
GTEST_API_ AssertionResult EqFailure(const char *expected_expression, const char *actual_expression, const std::string &expected_value, const std::string &actual_value, bool ignoring_case)
Definition: gtest.cc:1275
GTEST_API_ std::string GetBoolAssertionFailureMessage(const AssertionResult &assertion_result, const char *expression_text, const char *actual_predicate_value, const char *expected_predicate_value)
Definition: gtest.cc:1309
GTEST_API_ std::string CreateUnifiedDiff(const std::vector< std::string > &left, const std::vector< std::string > &right, size_t context=2)
Definition: gtest.cc:1166
TypeWithSize< sizeof(RawType)>::UInt Bits
const_iterator end() const
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition: gtest-port.h:906
void InitCopy(const Element *array, size_t a_size)
char(& IsNullLiteralHelper(...))[2]
UNITTEST_START int * value
Definition: unit1602.c:51
size_t size
Definition: unit1302.c:52
#define fprintf
Definition: curl_printf.h:41
Iter ArrayAwareFind(Iter begin, Iter end, const Element &elem)
Response Head(Ts &&...ts)
Definition: api.h:107
const char * name
Definition: curl_sasl.c:54
bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N])
std::string StripTrailingSpaces(std::string str)
Definition: gtest-port.h:2226
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T)


rc_tagdetect_client
Author(s): Monika Florek-Jasinska , Raphael Schaller
autogenerated on Sat Feb 13 2021 03:42:09