lgc.c
Go to the documentation of this file.
1 /*
2 ** $Id: lgc.c $
3 ** Garbage Collector
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lgc_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 #include <stdio.h>
13 #include <string.h>
14 
15 
16 #include "lua.h"
17 
18 #include "ldebug.h"
19 #include "ldo.h"
20 #include "lfunc.h"
21 #include "lgc.h"
22 #include "lmem.h"
23 #include "lobject.h"
24 #include "lstate.h"
25 #include "lstring.h"
26 #include "ltable.h"
27 #include "ltm.h"
28 
29 
30 /*
31 ** Maximum number of elements to sweep in each single step.
32 ** (Large enough to dissipate fixed overheads but small enough
33 ** to allow small steps for the collector.)
34 */
35 #define GCSWEEPMAX 100
36 
37 /*
38 ** Maximum number of finalizers to call in each single step.
39 */
40 #define GCFINMAX 10
41 
42 
43 /*
44 ** Cost of calling one finalizer.
45 */
46 #define GCFINALIZECOST 50
47 
48 
49 /*
50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51 ** sweeping an object, etc.)
52 */
53 #define WORK2MEM sizeof(TValue)
54 
55 
56 /*
57 ** macro to adjust 'pause': 'pause' is actually used like
58 ** 'pause / PAUSEADJ' (value chosen by tests)
59 */
60 #define PAUSEADJ 100
61 
62 
63 /* mask with all color bits */
64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
65 
66 /* mask with all GC bits */
67 #define maskgcbits (maskcolors | AGEBITS)
68 
69 
70 /* macro to erase all color bits then set only the current white bit */
71 #define makewhite(g,x) \
72  (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73 
74 /* make an object gray (neither white nor black) */
75 #define set2gray(x) resetbits(x->marked, maskcolors)
76 
77 
78 /* make an object black (coming from any color) */
79 #define set2black(x) \
80  (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81 
82 
83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
84 
85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
86 
87 
88 /*
89 ** Protected access to objects in values
90 */
91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
92 
93 
94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95  if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96 
97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98 
99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100 
101 /*
102 ** mark an object that can be NULL (either because it is really optional,
103 ** or it was stripped as debug info, or inside an uncompleted structure)
104 */
105 #define markobjectN(g,t) { if (t) markobject(g,t); }
106 
107 static void reallymarkobject (global_State *g, GCObject *o);
108 static lu_mem atomic (lua_State *L);
109 static void entersweep (lua_State *L);
110 
111 
112 /*
113 ** {======================================================
114 ** Generic functions
115 ** =======================================================
116 */
117 
118 
119 /*
120 ** one after last element in a hash array
121 */
122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
123 
124 
125 static GCObject **getgclist (GCObject *o) {
126  switch (o->tt) {
127  case LUA_VTABLE: return &gco2t(o)->gclist;
128  case LUA_VLCL: return &gco2lcl(o)->gclist;
129  case LUA_VCCL: return &gco2ccl(o)->gclist;
130  case LUA_VTHREAD: return &gco2th(o)->gclist;
131  case LUA_VPROTO: return &gco2p(o)->gclist;
132  case LUA_VUSERDATA: {
133  Udata *u = gco2u(o);
134  lua_assert(u->nuvalue > 0);
135  return &u->gclist;
136  }
137  default: lua_assert(0); return 0;
138  }
139 }
140 
141 
142 /*
143 ** Link a collectable object 'o' with a known type into the list 'p'.
144 ** (Must be a macro to access the 'gclist' field in different types.)
145 */
146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147 
148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149  lua_assert(!isgray(o)); /* cannot be in a gray list */
150  *pnext = *list;
151  *list = o;
152  set2gray(o); /* now it is */
153 }
154 
155 
156 /*
157 ** Link a generic collectable object 'o' into the list 'p'.
158 */
159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160 
161 
162 
163 /*
164 ** Clear keys for empty entries in tables. If entry is empty
165 ** and its key is not marked, mark its entry as dead. This allows the
166 ** collection of the key, but keeps its entry in the table (its removal
167 ** could break a chain). The main feature of a dead key is that it must
168 ** be different from any other value, to do not disturb searches.
169 ** Other places never manipulate dead keys, because its associated empty
170 ** value is enough to signal that the entry is logically empty.
171 */
172 static void clearkey (Node *n) {
173  lua_assert(isempty(gval(n)));
174  if (keyiswhite(n))
175  setdeadkey(n); /* unused and unmarked key; remove it */
176 }
177 
178 
179 /*
180 ** tells whether a key or value can be cleared from a weak
181 ** table. Non-collectable objects are never removed from weak
182 ** tables. Strings behave as 'values', so are never removed too. for
183 ** other objects: if really collected, cannot keep them; for objects
184 ** being finalized, keep them in keys, but not in values
185 */
186 static int iscleared (global_State *g, const GCObject *o) {
187  if (o == NULL) return 0; /* non-collectable value */
188  else if (novariant(o->tt) == LUA_TSTRING) {
189  markobject(g, o); /* strings are 'values', so are never weak */
190  return 0;
191  }
192  else return iswhite(o);
193 }
194 
195 
196 /*
197 ** Barrier that moves collector forward, that is, marks the white object
198 ** 'v' being pointed by the black object 'o'. In the generational
199 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
200 ** be changed directly to OLD, because it may still point to non-old
201 ** objects. So, it is marked as OLD0. In the next cycle it will become
202 ** OLD1, and in the next it will finally become OLD (regular old). By
203 ** then, any object it points to will also be old. If called in the
204 ** incremental sweep phase, it clears the black object to white (sweep
205 ** it) to avoid other barrier calls for this same object. (That cannot
206 ** be done is generational mode, as its sweep does not distinguish
207 ** whites from deads.)
208 */
210  global_State *g = G(L);
211  lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
212  if (keepinvariant(g)) { /* must keep invariant? */
213  reallymarkobject(g, v); /* restore invariant */
214  if (isold(o)) {
215  lua_assert(!isold(v)); /* white object could not be old */
216  setage(v, G_OLD0); /* restore generational invariant */
217  }
218  }
219  else { /* sweep phase */
221  if (g->gckind == KGC_INC) /* incremental mode? */
222  makewhite(g, o); /* mark 'o' as white to avoid other barriers */
223  }
224 }
225 
226 
227 /*
228 ** barrier that moves collector backward, that is, mark the black object
229 ** pointing to a white object as gray again.
230 */
232  global_State *g = G(L);
233  lua_assert(isblack(o) && !isdead(g, o));
234  lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
235  if (getage(o) == G_TOUCHED2) /* already in gray list? */
236  set2gray(o); /* make it gray to become touched1 */
237  else /* link it in 'grayagain' and paint it gray */
238  linkobjgclist(o, g->grayagain);
239  if (isold(o)) /* generational mode? */
240  setage(o, G_TOUCHED1); /* touched in current cycle */
241 }
242 
243 
244 void luaC_fix (lua_State *L, GCObject *o) {
245  global_State *g = G(L);
246  lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
247  set2gray(o); /* they will be gray forever */
248  setage(o, G_OLD); /* and old forever */
249  g->allgc = o->next; /* remove object from 'allgc' list */
250  o->next = g->fixedgc; /* link it to 'fixedgc' list */
251  g->fixedgc = o;
252 }
253 
254 
255 /*
256 ** create a new collectable object (with given type and size) and link
257 ** it to 'allgc' list.
258 */
259 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
260  global_State *g = G(L);
261  GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz));
262  o->marked = luaC_white(g);
263  o->tt = tt;
264  o->next = g->allgc;
265  g->allgc = o;
266  return o;
267 }
268 
269 /* }====================================================== */
270 
271 
272 
273 /*
274 ** {======================================================
275 ** Mark functions
276 ** =======================================================
277 */
278 
279 
280 /*
281 ** Mark an object. Userdata with no user values, strings, and closed
282 ** upvalues are visited and turned black here. Open upvalues are
283 ** already indirectly linked through their respective threads in the
284 ** 'twups' list, so they don't go to the gray list; nevertheless, they
285 ** are kept gray to avoid barriers, as their values will be revisited
286 ** by the thread or by 'remarkupvals'. Other objects are added to the
287 ** gray list to be visited (and turned black) later. Both userdata and
288 ** upvalues can call this function recursively, but this recursion goes
289 ** for at most two levels: An upvalue cannot refer to another upvalue
290 ** (only closures can), and a userdata's metatable must be a table.
291 */
292 static void reallymarkobject (global_State *g, GCObject *o) {
293  switch (o->tt) {
294  case LUA_VSHRSTR:
295  case LUA_VLNGSTR: {
296  set2black(o); /* nothing to visit */
297  break;
298  }
299  case LUA_VUPVAL: {
300  UpVal *uv = gco2upv(o);
301  if (upisopen(uv))
302  set2gray(uv); /* open upvalues are kept gray */
303  else
304  set2black(o); /* closed upvalues are visited here */
305  markvalue(g, uv->v); /* mark its content */
306  break;
307  }
308  case LUA_VUSERDATA: {
309  Udata *u = gco2u(o);
310  if (u->nuvalue == 0) { /* no user values? */
311  markobjectN(g, u->metatable); /* mark its metatable */
312  set2black(o); /* nothing else to mark */
313  break;
314  }
315  /* else... */
316  } /* FALLTHROUGH */
317  case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
318  case LUA_VTHREAD: case LUA_VPROTO: {
319  linkobjgclist(o, g->gray); /* to be visited later */
320  break;
321  }
322  default: lua_assert(0); break;
323  }
324 }
325 
326 
327 /*
328 ** mark metamethods for basic types
329 */
330 static void markmt (global_State *g) {
331  int i;
332  for (i=0; i < LUA_NUMTAGS; i++)
333  markobjectN(g, g->mt[i]);
334 }
335 
336 
337 /*
338 ** mark all objects in list of being-finalized
339 */
341  GCObject *o;
342  lu_mem count = 0;
343  for (o = g->tobefnz; o != NULL; o = o->next) {
344  count++;
345  markobject(g, o);
346  }
347  return count;
348 }
349 
350 
351 /*
352 ** For each non-marked thread, simulates a barrier between each open
353 ** upvalue and its value. (If the thread is collected, the value will be
354 ** assigned to the upvalue, but then it can be too late for the barrier
355 ** to act. The "barrier" does not need to check colors: A non-marked
356 ** thread must be young; upvalues cannot be older than their threads; so
357 ** any visited upvalue must be young too.) Also removes the thread from
358 ** the list, as it was already visited. Removes also threads with no
359 ** upvalues, as they have nothing to be checked. (If the thread gets an
360 ** upvalue later, it will be linked in the list again.)
361 */
362 static int remarkupvals (global_State *g) {
363  lua_State *thread;
364  lua_State **p = &g->twups;
365  int work = 0; /* estimate of how much work was done here */
366  while ((thread = *p) != NULL) {
367  work++;
368  if (!iswhite(thread) && thread->openupval != NULL)
369  p = &thread->twups; /* keep marked thread with upvalues in the list */
370  else { /* thread is not marked or without upvalues */
371  UpVal *uv;
372  lua_assert(!isold(thread) || thread->openupval == NULL);
373  *p = thread->twups; /* remove thread from the list */
374  thread->twups = thread; /* mark that it is out of list */
375  for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
376  lua_assert(getage(uv) <= getage(thread));
377  work++;
378  if (!iswhite(uv)) { /* upvalue already visited? */
379  lua_assert(upisopen(uv) && isgray(uv));
380  markvalue(g, uv->v); /* mark its value */
381  }
382  }
383  }
384  }
385  return work;
386 }
387 
388 
389 static void cleargraylists (global_State *g) {
390  g->gray = g->grayagain = NULL;
391  g->weak = g->allweak = g->ephemeron = NULL;
392 }
393 
394 
395 /*
396 ** mark root set and reset all gray lists, to start a new collection
397 */
398 static void restartcollection (global_State *g) {
399  cleargraylists(g);
400  markobject(g, g->mainthread);
401  markvalue(g, &g->l_registry);
402  markmt(g);
403  markbeingfnz(g); /* mark any finalizing object left from previous cycle */
404 }
405 
406 /* }====================================================== */
407 
408 
409 /*
410 ** {======================================================
411 ** Traverse functions
412 ** =======================================================
413 */
414 
415 
416 /*
417 ** Check whether object 'o' should be kept in the 'grayagain' list for
418 ** post-processing by 'correctgraylist'. (It could put all old objects
419 ** in the list and leave all the work to 'correctgraylist', but it is
420 ** more efficient to avoid adding elements that will be removed.) Only
421 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
422 ** back to a gray list, but then it must become OLD. (That is what
423 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
424 */
425 static void genlink (global_State *g, GCObject *o) {
426  lua_assert(isblack(o));
427  if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
428  linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
429  } /* everything else do not need to be linked back */
430  else if (getage(o) == G_TOUCHED2)
431  changeage(o, G_TOUCHED2, G_OLD); /* advance age */
432 }
433 
434 
435 /*
436 ** Traverse a table with weak values and link it to proper list. During
437 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
438 ** atomic phase. In the atomic phase, if table has any white value,
439 ** put it in 'weak' list, to be cleared.
440 */
441 static void traverseweakvalue (global_State *g, Table *h) {
442  Node *n, *limit = gnodelast(h);
443  /* if there is array part, assume it may have white values (it is not
444  worth traversing it now just to check) */
445  int hasclears = (h->alimit > 0);
446  for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
447  if (isempty(gval(n))) /* entry is empty? */
448  clearkey(n); /* clear its key */
449  else {
450  lua_assert(!keyisnil(n));
451  markkey(g, n);
452  if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
453  hasclears = 1; /* table will have to be cleared */
454  }
455  }
456  if (g->gcstate == GCSatomic && hasclears)
457  linkgclist(h, g->weak); /* has to be cleared later */
458  else
459  linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
460 }
461 
462 
463 /*
464 ** Traverse an ephemeron table and link it to proper list. Returns true
465 ** iff any object was marked during this traversal (which implies that
466 ** convergence has to continue). During propagation phase, keep table
467 ** in 'grayagain' list, to be visited again in the atomic phase. In
468 ** the atomic phase, if table has any white->white entry, it has to
469 ** be revisited during ephemeron convergence (as that key may turn
470 ** black). Otherwise, if it has any white key, table has to be cleared
471 ** (in the atomic phase). In generational mode, some tables
472 ** must be kept in some gray list for post-processing; this is done
473 ** by 'genlink'.
474 */
475 static int traverseephemeron (global_State *g, Table *h, int inv) {
476  int marked = 0; /* true if an object is marked in this traversal */
477  int hasclears = 0; /* true if table has white keys */
478  int hasww = 0; /* true if table has entry "white-key -> white-value" */
479  unsigned int i;
480  unsigned int asize = luaH_realasize(h);
481  unsigned int nsize = sizenode(h);
482  /* traverse array part */
483  for (i = 0; i < asize; i++) {
484  if (valiswhite(&h->array[i])) {
485  marked = 1;
486  reallymarkobject(g, gcvalue(&h->array[i]));
487  }
488  }
489  /* traverse hash part; if 'inv', traverse descending
490  (see 'convergeephemerons') */
491  for (i = 0; i < nsize; i++) {
492  Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
493  if (isempty(gval(n))) /* entry is empty? */
494  clearkey(n); /* clear its key */
495  else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
496  hasclears = 1; /* table must be cleared */
497  if (valiswhite(gval(n))) /* value not marked yet? */
498  hasww = 1; /* white-white entry */
499  }
500  else if (valiswhite(gval(n))) { /* value not marked yet? */
501  marked = 1;
502  reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
503  }
504  }
505  /* link table into proper list */
506  if (g->gcstate == GCSpropagate)
507  linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
508  else if (hasww) /* table has white->white entries? */
509  linkgclist(h, g->ephemeron); /* have to propagate again */
510  else if (hasclears) /* table has white keys? */
511  linkgclist(h, g->allweak); /* may have to clean white keys */
512  else
513  genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
514  return marked;
515 }
516 
517 
518 static void traversestrongtable (global_State *g, Table *h) {
519  Node *n, *limit = gnodelast(h);
520  unsigned int i;
521  unsigned int asize = luaH_realasize(h);
522  for (i = 0; i < asize; i++) /* traverse array part */
523  markvalue(g, &h->array[i]);
524  for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
525  if (isempty(gval(n))) /* entry is empty? */
526  clearkey(n); /* clear its key */
527  else {
528  lua_assert(!keyisnil(n));
529  markkey(g, n);
530  markvalue(g, gval(n));
531  }
532  }
533  genlink(g, obj2gco(h));
534 }
535 
536 
538  const char *weakkey, *weakvalue;
539  const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
540  markobjectN(g, h->metatable);
541  if (mode && ttisstring(mode) && /* is there a weak mode? */
542  (cast_void(weakkey = strchr(svalue(mode), 'k')),
543  cast_void(weakvalue = strchr(svalue(mode), 'v')),
544  (weakkey || weakvalue))) { /* is really weak? */
545  if (!weakkey) /* strong keys? */
546  traverseweakvalue(g, h);
547  else if (!weakvalue) /* strong values? */
548  traverseephemeron(g, h, 0);
549  else /* all weak */
550  linkgclist(h, g->allweak); /* nothing to traverse now */
551  }
552  else /* not weak */
553  traversestrongtable(g, h);
554  return 1 + h->alimit + 2 * allocsizenode(h);
555 }
556 
557 
558 static int traverseudata (global_State *g, Udata *u) {
559  int i;
560  markobjectN(g, u->metatable); /* mark its metatable */
561  for (i = 0; i < u->nuvalue; i++)
562  markvalue(g, &u->uv[i].uv);
563  genlink(g, obj2gco(u));
564  return 1 + u->nuvalue;
565 }
566 
567 
568 /*
569 ** Traverse a prototype. (While a prototype is being build, its
570 ** arrays can be larger than needed; the extra slots are filled with
571 ** NULL, so the use of 'markobjectN')
572 */
573 static int traverseproto (global_State *g, Proto *f) {
574  int i;
575  markobjectN(g, f->source);
576  for (i = 0; i < f->sizek; i++) /* mark literals */
577  markvalue(g, &f->k[i]);
578  for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
579  markobjectN(g, f->upvalues[i].name);
580  for (i = 0; i < f->sizep; i++) /* mark nested protos */
581  markobjectN(g, f->p[i]);
582  for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
583  markobjectN(g, f->locvars[i].varname);
584  return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
585 }
586 
587 
588 static int traverseCclosure (global_State *g, CClosure *cl) {
589  int i;
590  for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
591  markvalue(g, &cl->upvalue[i]);
592  return 1 + cl->nupvalues;
593 }
594 
595 /*
596 ** Traverse a Lua closure, marking its prototype and its upvalues.
597 ** (Both can be NULL while closure is being created.)
598 */
599 static int traverseLclosure (global_State *g, LClosure *cl) {
600  int i;
601  markobjectN(g, cl->p); /* mark its prototype */
602  for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
603  UpVal *uv = cl->upvals[i];
604  markobjectN(g, uv); /* mark upvalue */
605  }
606  return 1 + cl->nupvalues;
607 }
608 
609 
610 /*
611 ** Traverse a thread, marking the elements in the stack up to its top
612 ** and cleaning the rest of the stack in the final traversal. That
613 ** ensures that the entire stack have valid (non-dead) objects.
614 ** Threads have no barriers. In gen. mode, old threads must be visited
615 ** at every cycle, because they might point to young objects. In inc.
616 ** mode, the thread can still be modified before the end of the cycle,
617 ** and therefore it must be visited again in the atomic phase. To ensure
618 ** these visits, threads must return to a gray list if they are not new
619 ** (which can only happen in generational mode) or if the traverse is in
620 ** the propagate phase (which can only happen in incremental mode).
621 */
622 static int traversethread (global_State *g, lua_State *th) {
623  UpVal *uv;
624  StkId o = th->stack;
625  if (isold(th) || g->gcstate == GCSpropagate)
626  linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
627  if (o == NULL)
628  return 1; /* stack not completely built yet */
629  lua_assert(g->gcstate == GCSatomic ||
630  th->openupval == NULL || isintwups(th));
631  for (; o < th->top; o++) /* mark live elements in the stack */
632  markvalue(g, s2v(o));
633  for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
634  markobject(g, uv); /* open upvalues cannot be collected */
635  if (g->gcstate == GCSatomic) { /* final traversal? */
636  StkId lim = th->stack + th->stacksize; /* real end of stack */
637  for (; o < lim; o++) /* clear not-marked stack slice */
638  setnilvalue(s2v(o));
639  /* 'remarkupvals' may have removed thread from 'twups' list */
640  if (!isintwups(th) && th->openupval != NULL) {
641  th->twups = g->twups; /* link it back to the list */
642  g->twups = th;
643  }
644  }
645  else if (!g->gcemergency)
646  luaD_shrinkstack(th); /* do not change stack in emergency cycle */
647  return 1 + th->stacksize;
648 }
649 
650 
651 /*
652 ** traverse one gray object, turning it to black.
653 */
655  GCObject *o = g->gray;
656  nw2black(o);
657  g->gray = *getgclist(o); /* remove from 'gray' list */
658  switch (o->tt) {
659  case LUA_VTABLE: return traversetable(g, gco2t(o));
660  case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
661  case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
662  case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
663  case LUA_VPROTO: return traverseproto(g, gco2p(o));
664  case LUA_VTHREAD: return traversethread(g, gco2th(o));
665  default: lua_assert(0); return 0;
666  }
667 }
668 
669 
671  lu_mem tot = 0;
672  while (g->gray)
673  tot += propagatemark(g);
674  return tot;
675 }
676 
677 
678 /*
679 ** Traverse all ephemeron tables propagating marks from keys to values.
680 ** Repeat until it converges, that is, nothing new is marked. 'dir'
681 ** inverts the direction of the traversals, trying to speed up
682 ** convergence on chains in the same table.
683 **
684 */
686  int changed;
687  int dir = 0;
688  do {
689  GCObject *w;
690  GCObject *next = g->ephemeron; /* get ephemeron list */
691  g->ephemeron = NULL; /* tables may return to this list when traversed */
692  changed = 0;
693  while ((w = next) != NULL) { /* for each ephemeron table */
694  Table *h = gco2t(w);
695  next = h->gclist; /* list is rebuilt during loop */
696  nw2black(h); /* out of the list (for now) */
697  if (traverseephemeron(g, h, dir)) { /* marked some value? */
698  propagateall(g); /* propagate changes */
699  changed = 1; /* will have to revisit all ephemeron tables */
700  }
701  }
702  dir = !dir; /* invert direction next time */
703  } while (changed); /* repeat until no more changes */
704 }
705 
706 /* }====================================================== */
707 
708 
709 /*
710 ** {======================================================
711 ** Sweep Functions
712 ** =======================================================
713 */
714 
715 
716 /*
717 ** clear entries with unmarked keys from all weaktables in list 'l'
718 */
719 static void clearbykeys (global_State *g, GCObject *l) {
720  for (; l; l = gco2t(l)->gclist) {
721  Table *h = gco2t(l);
722  Node *limit = gnodelast(h);
723  Node *n;
724  for (n = gnode(h, 0); n < limit; n++) {
725  if (iscleared(g, gckeyN(n))) /* unmarked key? */
726  setempty(gval(n)); /* remove entry */
727  if (isempty(gval(n))) /* is entry empty? */
728  clearkey(n); /* clear its key */
729  }
730  }
731 }
732 
733 
734 /*
735 ** clear entries with unmarked values from all weaktables in list 'l' up
736 ** to element 'f'
737 */
738 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
739  for (; l != f; l = gco2t(l)->gclist) {
740  Table *h = gco2t(l);
741  Node *n, *limit = gnodelast(h);
742  unsigned int i;
743  unsigned int asize = luaH_realasize(h);
744  for (i = 0; i < asize; i++) {
745  TValue *o = &h->array[i];
746  if (iscleared(g, gcvalueN(o))) /* value was collected? */
747  setempty(o); /* remove entry */
748  }
749  for (n = gnode(h, 0); n < limit; n++) {
750  if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
751  setempty(gval(n)); /* remove entry */
752  if (isempty(gval(n))) /* is entry empty? */
753  clearkey(n); /* clear its key */
754  }
755  }
756 }
757 
758 
759 static void freeupval (lua_State *L, UpVal *uv) {
760  if (upisopen(uv))
761  luaF_unlinkupval(uv);
762  luaM_free(L, uv);
763 }
764 
765 
766 static void freeobj (lua_State *L, GCObject *o) {
767  switch (o->tt) {
768  case LUA_VPROTO:
769  luaF_freeproto(L, gco2p(o));
770  break;
771  case LUA_VUPVAL:
772  freeupval(L, gco2upv(o));
773  break;
774  case LUA_VLCL:
775  luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues));
776  break;
777  case LUA_VCCL:
778  luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues));
779  break;
780  case LUA_VTABLE:
781  luaH_free(L, gco2t(o));
782  break;
783  case LUA_VTHREAD:
784  luaE_freethread(L, gco2th(o));
785  break;
786  case LUA_VUSERDATA: {
787  Udata *u = gco2u(o);
788  luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
789  break;
790  }
791  case LUA_VSHRSTR:
792  luaS_remove(L, gco2ts(o)); /* remove it from hash table */
793  luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen));
794  break;
795  case LUA_VLNGSTR:
796  luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen));
797  break;
798  default: lua_assert(0);
799  }
800 }
801 
802 
803 /*
804 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
805 ** objects, where a dead object is one marked with the old (non current)
806 ** white; change all non-dead objects back to white, preparing for next
807 ** collection cycle. Return where to continue the traversal or NULL if
808 ** list is finished. ('*countout' gets the number of elements traversed.)
809 */
810 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
811  int *countout) {
812  global_State *g = G(L);
813  int ow = otherwhite(g);
814  int i;
815  int white = luaC_white(g); /* current white */
816  for (i = 0; *p != NULL && i < countin; i++) {
817  GCObject *curr = *p;
818  int marked = curr->marked;
819  if (isdeadm(ow, marked)) { /* is 'curr' dead? */
820  *p = curr->next; /* remove 'curr' from list */
821  freeobj(L, curr); /* erase 'curr' */
822  }
823  else { /* change mark to 'white' */
824  curr->marked = cast_byte((marked & ~maskgcbits) | white);
825  p = &curr->next; /* go to next element */
826  }
827  }
828  if (countout)
829  *countout = i; /* number of elements traversed */
830  return (*p == NULL) ? NULL : p;
831 }
832 
833 
834 /*
835 ** sweep a list until a live object (or end of list)
836 */
838  GCObject **old = p;
839  do {
840  p = sweeplist(L, p, 1, NULL);
841  } while (p == old);
842  return p;
843 }
844 
845 /* }====================================================== */
846 
847 
848 /*
849 ** {======================================================
850 ** Finalization
851 ** =======================================================
852 */
853 
854 /*
855 ** If possible, shrink string table.
856 */
857 static void checkSizes (lua_State *L, global_State *g) {
858  if (!g->gcemergency) {
859  if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */
860  l_mem olddebt = g->GCdebt;
861  luaS_resize(L, g->strt.size / 2);
862  g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
863  }
864  }
865 }
866 
867 
868 /*
869 ** Get the next udata to be finalized from the 'tobefnz' list, and
870 ** link it back into the 'allgc' list.
871 */
873  GCObject *o = g->tobefnz; /* get first element */
875  g->tobefnz = o->next; /* remove it from 'tobefnz' list */
876  o->next = g->allgc; /* return it to 'allgc' list */
877  g->allgc = o;
878  resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
879  if (issweepphase(g))
880  makewhite(g, o); /* "sweep" object */
881  else if (getage(o) == G_OLD1)
882  g->firstold1 = o; /* it is the first OLD1 object in the list */
883  return o;
884 }
885 
886 
887 static void dothecall (lua_State *L, void *ud) {
888  UNUSED(ud);
889  luaD_callnoyield(L, L->top - 2, 0);
890 }
891 
892 
893 static void GCTM (lua_State *L) {
894  global_State *g = G(L);
895  const TValue *tm;
896  TValue v;
897  lua_assert(!g->gcemergency);
898  setgcovalue(L, &v, udata2finalize(g));
899  tm = luaT_gettmbyobj(L, &v, TM_GC);
900  if (!notm(tm)) { /* is there a finalizer? */
901  int status;
902  lu_byte oldah = L->allowhook;
903  int running = g->gcrunning;
904  L->allowhook = 0; /* stop debug hooks during GC metamethod */
905  g->gcrunning = 0; /* avoid GC steps */
906  setobj2s(L, L->top++, tm); /* push finalizer... */
907  setobj2s(L, L->top++, &v); /* ... and its argument */
908  L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
909  status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0);
910  L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
911  L->allowhook = oldah; /* restore hooks */
912  g->gcrunning = running; /* restore state */
913  if (unlikely(status != LUA_OK)) { /* error while running __gc? */
914  luaE_warnerror(L, "__gc metamethod");
915  L->top--; /* pops error object */
916  }
917  }
918 }
919 
920 
921 /*
922 ** Call a few finalizers
923 */
924 static int runafewfinalizers (lua_State *L, int n) {
925  global_State *g = G(L);
926  int i;
927  for (i = 0; i < n && g->tobefnz; i++)
928  GCTM(L); /* call one finalizer */
929  return i;
930 }
931 
932 
933 /*
934 ** call all pending finalizers
935 */
937  global_State *g = G(L);
938  while (g->tobefnz)
939  GCTM(L);
940 }
941 
942 
943 /*
944 ** find last 'next' field in list 'p' list (to add elements in its end)
945 */
946 static GCObject **findlast (GCObject **p) {
947  while (*p != NULL)
948  p = &(*p)->next;
949  return p;
950 }
951 
952 
953 /*
954 ** Move all unreachable objects (or 'all' objects) that need
955 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
956 ** (Note that objects after 'finobjold1' cannot be white, so they
957 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
958 ** so the whole list is traversed.)
959 */
960 static void separatetobefnz (global_State *g, int all) {
961  GCObject *curr;
962  GCObject **p = &g->finobj;
963  GCObject **lastnext = findlast(&g->tobefnz);
964  while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
965  lua_assert(tofinalize(curr));
966  if (!(iswhite(curr) || all)) /* not being collected? */
967  p = &curr->next; /* don't bother with it */
968  else {
969  if (curr == g->finobjsur) /* removing 'finobjsur'? */
970  g->finobjsur = curr->next; /* correct it */
971  *p = curr->next; /* remove 'curr' from 'finobj' list */
972  curr->next = *lastnext; /* link at the end of 'tobefnz' list */
973  *lastnext = curr;
974  lastnext = &curr->next;
975  }
976  }
977 }
978 
979 
980 /*
981 ** If pointer 'p' points to 'o', move it to the next element.
982 */
983 static void checkpointer (GCObject **p, GCObject *o) {
984  if (o == *p)
985  *p = o->next;
986 }
987 
988 
989 /*
990 ** Correct pointers to objects inside 'allgc' list when
991 ** object 'o' is being removed from the list.
992 */
993 static void correctpointers (global_State *g, GCObject *o) {
994  checkpointer(&g->survival, o);
995  checkpointer(&g->old1, o);
996  checkpointer(&g->reallyold, o);
997  checkpointer(&g->firstold1, o);
998 }
999 
1000 
1001 /*
1002 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1003 ** search the list to find it) and link it in 'finobj' list.
1004 */
1006  global_State *g = G(L);
1007  if (tofinalize(o) || /* obj. is already marked... */
1008  gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */
1009  return; /* nothing to be done */
1010  else { /* move 'o' to 'finobj' list */
1011  GCObject **p;
1012  if (issweepphase(g)) {
1013  makewhite(g, o); /* "sweep" object 'o' */
1014  if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
1015  g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
1016  }
1017  else
1018  correctpointers(g, o);
1019  /* search for pointer pointing to 'o' */
1020  for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1021  *p = o->next; /* remove 'o' from 'allgc' list */
1022  o->next = g->finobj; /* link it in 'finobj' list */
1023  g->finobj = o;
1024  l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
1025  }
1026 }
1027 
1028 /* }====================================================== */
1029 
1030 
1031 /*
1032 ** {======================================================
1033 ** Generational Collector
1034 ** =======================================================
1035 */
1036 
1037 static void setpause (global_State *g);
1038 
1039 
1040 /*
1041 ** Sweep a list of objects to enter generational mode. Deletes dead
1042 ** objects and turns the non dead to old. All non-dead threads---which
1043 ** are now old---must be in a gray list. Everything else is not in a
1044 ** gray list. Open upvalues are also kept gray.
1045 */
1046 static void sweep2old (lua_State *L, GCObject **p) {
1047  GCObject *curr;
1048  global_State *g = G(L);
1049  while ((curr = *p) != NULL) {
1050  if (iswhite(curr)) { /* is 'curr' dead? */
1051  lua_assert(isdead(g, curr));
1052  *p = curr->next; /* remove 'curr' from list */
1053  freeobj(L, curr); /* erase 'curr' */
1054  }
1055  else { /* all surviving objects become old */
1056  setage(curr, G_OLD);
1057  if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
1058  lua_State *th = gco2th(curr);
1059  linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
1060  }
1061  else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1062  set2gray(curr); /* open upvalues are always gray */
1063  else /* everything else is black */
1064  nw2black(curr);
1065  p = &curr->next; /* go to next element */
1066  }
1067  }
1068 }
1069 
1070 
1071 /*
1072 ** Sweep for generational mode. Delete dead objects. (Because the
1073 ** collection is not incremental, there are no "new white" objects
1074 ** during the sweep. So, any white object must be dead.) For
1075 ** non-dead objects, advance their ages and clear the color of
1076 ** new objects. (Old objects keep their colors.)
1077 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1078 ** here, because these old-generation objects are usually not swept
1079 ** here. They will all be advanced in 'correctgraylist'. That function
1080 ** will also remove objects turned white here from any gray list.
1081 */
1083  GCObject *limit, GCObject **pfirstold1) {
1084  static const lu_byte nextage[] = {
1085  G_SURVIVAL, /* from G_NEW */
1086  G_OLD1, /* from G_SURVIVAL */
1087  G_OLD1, /* from G_OLD0 */
1088  G_OLD, /* from G_OLD1 */
1089  G_OLD, /* from G_OLD (do not change) */
1090  G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
1091  G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
1092  };
1093  int white = luaC_white(g);
1094  GCObject *curr;
1095  while ((curr = *p) != limit) {
1096  if (iswhite(curr)) { /* is 'curr' dead? */
1097  lua_assert(!isold(curr) && isdead(g, curr));
1098  *p = curr->next; /* remove 'curr' from list */
1099  freeobj(L, curr); /* erase 'curr' */
1100  }
1101  else { /* correct mark and age */
1102  if (getage(curr) == G_NEW) { /* new objects go back to white */
1103  int marked = curr->marked & ~maskgcbits; /* erase GC bits */
1104  curr->marked = cast_byte(marked | G_SURVIVAL | white);
1105  }
1106  else { /* all other objects will be old, and so keep their color */
1107  setage(curr, nextage[getage(curr)]);
1108  if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1109  *pfirstold1 = curr; /* first OLD1 object in the list */
1110  }
1111  p = &curr->next; /* go to next element */
1112  }
1113  }
1114  return p;
1115 }
1116 
1117 
1118 /*
1119 ** Traverse a list making all its elements white and clearing their
1120 ** age. In incremental mode, all objects are 'new' all the time,
1121 ** except for fixed strings (which are always old).
1122 */
1123 static void whitelist (global_State *g, GCObject *p) {
1124  int white = luaC_white(g);
1125  for (; p != NULL; p = p->next)
1126  p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1127 }
1128 
1129 
1130 /*
1131 ** Correct a list of gray objects. Return pointer to where rest of the
1132 ** list should be linked.
1133 ** Because this correction is done after sweeping, young objects might
1134 ** be turned white and still be in the list. They are only removed.
1135 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1136 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1137 ** regular old; they and anything else are removed from the list.
1138 */
1140  GCObject *curr;
1141  while ((curr = *p) != NULL) {
1142  GCObject **next = getgclist(curr);
1143  if (iswhite(curr))
1144  goto remove; /* remove all white objects */
1145  else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
1146  lua_assert(isgray(curr));
1147  nw2black(curr); /* make it black, for next barrier */
1149  goto remain; /* keep it in the list and go to next element */
1150  }
1151  else if (curr->tt == LUA_VTHREAD) {
1152  lua_assert(isgray(curr));
1153  goto remain; /* keep non-white threads on the list */
1154  }
1155  else { /* everything else is removed */
1156  lua_assert(isold(curr)); /* young objects should be white here */
1157  if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
1158  changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
1159  nw2black(curr); /* make object black (to be removed) */
1160  goto remove;
1161  }
1162  remove: *p = *next; continue;
1163  remain: p = next; continue;
1164  }
1165  return p;
1166 }
1167 
1168 
1169 /*
1170 ** Correct all gray lists, coalescing them into 'grayagain'.
1171 */
1172 static void correctgraylists (global_State *g) {
1173  GCObject **list = correctgraylist(&g->grayagain);
1174  *list = g->weak; g->weak = NULL;
1175  list = correctgraylist(list);
1176  *list = g->allweak; g->allweak = NULL;
1177  list = correctgraylist(list);
1178  *list = g->ephemeron; g->ephemeron = NULL;
1179  correctgraylist(list);
1180 }
1181 
1182 
1183 /*
1184 ** Mark black 'OLD1' objects when starting a new young collection.
1185 ** Gray objects are already in some gray list, and so will be visited
1186 ** in the atomic step.
1187 */
1188 static void markold (global_State *g, GCObject *from, GCObject *to) {
1189  GCObject *p;
1190  for (p = from; p != to; p = p->next) {
1191  if (getage(p) == G_OLD1) {
1192  lua_assert(!iswhite(p));
1193  changeage(p, G_OLD1, G_OLD); /* now they are old */
1194  if (isblack(p))
1195  reallymarkobject(g, p);
1196  }
1197  }
1198 }
1199 
1200 
1201 /*
1202 ** Finish a young-generation collection.
1203 */
1204 static void finishgencycle (lua_State *L, global_State *g) {
1205  correctgraylists(g);
1206  checkSizes(L, g);
1207  g->gcstate = GCSpropagate; /* skip restart */
1208  if (!g->gcemergency)
1210 }
1211 
1212 
1213 /*
1214 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1215 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1216 ** finish the collection.
1217 */
1219  GCObject **psurvival; /* to point to first non-dead survival object */
1220  GCObject *dummy; /* dummy out parameter to 'sweepgen' */
1222  if (g->firstold1) { /* are there regular OLD1 objects? */
1223  markold(g, g->firstold1, g->reallyold); /* mark them */
1224  g->firstold1 = NULL; /* no more OLD1 objects (for now) */
1225  }
1226  markold(g, g->finobj, g->finobjrold);
1227  markold(g, g->tobefnz, NULL);
1228  atomic(L);
1229 
1230  /* sweep nursery and get a pointer to its last live element */
1231  g->gcstate = GCSswpallgc;
1232  psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1233  /* sweep 'survival' */
1234  sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1235  g->reallyold = g->old1;
1236  g->old1 = *psurvival; /* 'survival' survivals are old now */
1237  g->survival = g->allgc; /* all news are survivals */
1238 
1239  /* repeat for 'finobj' lists */
1240  dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
1241  psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1242  /* sweep 'survival' */
1243  sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1244  g->finobjrold = g->finobjold1;
1245  g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
1246  g->finobjsur = g->finobj; /* all news are survivals */
1247 
1248  sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1249  finishgencycle(L, g);
1250 }
1251 
1252 
1253 /*
1254 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1255 ** generational mode. The sweeps remove dead objects and turn all
1256 ** surviving objects to old. Threads go back to 'grayagain'; everything
1257 ** else is turned black (not in any gray list).
1258 */
1259 static void atomic2gen (lua_State *L, global_State *g) {
1260  cleargraylists(g);
1261  /* sweep all elements making them old */
1262  g->gcstate = GCSswpallgc;
1263  sweep2old(L, &g->allgc);
1264  /* everything alive now is old */
1265  g->reallyold = g->old1 = g->survival = g->allgc;
1266  g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
1267 
1268  /* repeat for 'finobj' lists */
1269  sweep2old(L, &g->finobj);
1270  g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1271 
1272  sweep2old(L, &g->tobefnz);
1273 
1274  g->gckind = KGC_GEN;
1275  g->lastatomic = 0;
1276  g->GCestimate = gettotalbytes(g); /* base for memory control */
1277  finishgencycle(L, g);
1278 }
1279 
1280 
1281 /*
1282 ** Enter generational mode. Must go until the end of an atomic cycle
1283 ** to ensure that all objects are correctly marked and weak tables
1284 ** are cleared. Then, turn all objects into old and finishes the
1285 ** collection.
1286 */
1288  lu_mem numobjs;
1289  luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
1290  luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1291  numobjs = atomic(L); /* propagates all and then do the atomic stuff */
1292  atomic2gen(L, g);
1293  return numobjs;
1294 }
1295 
1296 
1297 /*
1298 ** Enter incremental mode. Turn all objects white, make all
1299 ** intermediate lists point to NULL (to avoid invalid pointers),
1300 ** and go to the pause state.
1301 */
1302 static void enterinc (global_State *g) {
1303  whitelist(g, g->allgc);
1304  g->reallyold = g->old1 = g->survival = NULL;
1305  whitelist(g, g->finobj);
1306  whitelist(g, g->tobefnz);
1307  g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1308  g->gcstate = GCSpause;
1309  g->gckind = KGC_INC;
1310  g->lastatomic = 0;
1311 }
1312 
1313 
1314 /*
1315 ** Change collector mode to 'newmode'.
1316 */
1317 void luaC_changemode (lua_State *L, int newmode) {
1318  global_State *g = G(L);
1319  if (newmode != g->gckind) {
1320  if (newmode == KGC_GEN) /* entering generational mode? */
1321  entergen(L, g);
1322  else
1323  enterinc(g); /* entering incremental mode */
1324  }
1325  g->lastatomic = 0;
1326 }
1327 
1328 
1329 /*
1330 ** Does a full collection in generational mode.
1331 */
1333  enterinc(g);
1334  return entergen(L, g);
1335 }
1336 
1337 
1338 /*
1339 ** Set debt for the next minor collection, which will happen when
1340 ** memory grows 'genminormul'%.
1341 */
1342 static void setminordebt (global_State *g) {
1343  luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1344 }
1345 
1346 
1347 /*
1348 ** Does a major collection after last collection was a "bad collection".
1349 **
1350 ** When the program is building a big structure, it allocates lots of
1351 ** memory but generates very little garbage. In those scenarios,
1352 ** the generational mode just wastes time doing small collections, and
1353 ** major collections are frequently what we call a "bad collection", a
1354 ** collection that frees too few objects. To avoid the cost of switching
1355 ** between generational mode and the incremental mode needed for full
1356 ** (major) collections, the collector tries to stay in incremental mode
1357 ** after a bad collection, and to switch back to generational mode only
1358 ** after a "good" collection (one that traverses less than 9/8 objects
1359 ** of the previous one).
1360 ** The collector must choose whether to stay in incremental mode or to
1361 ** switch back to generational mode before sweeping. At this point, it
1362 ** does not know the real memory in use, so it cannot use memory to
1363 ** decide whether to return to generational mode. Instead, it uses the
1364 ** number of objects traversed (returned by 'atomic') as a proxy. The
1365 ** field 'g->lastatomic' keeps this count from the last collection.
1366 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1367 */
1368 static void stepgenfull (lua_State *L, global_State *g) {
1369  lu_mem newatomic; /* count of traversed objects */
1370  lu_mem lastatomic = g->lastatomic; /* count from last collection */
1371  if (g->gckind == KGC_GEN) /* still in generational mode? */
1372  enterinc(g); /* enter incremental mode */
1373  luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1374  newatomic = atomic(L); /* mark everybody */
1375  if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */
1376  atomic2gen(L, g); /* return to generational mode */
1377  setminordebt(g);
1378  }
1379  else { /* another bad collection; stay in incremental mode */
1380  g->GCestimate = gettotalbytes(g); /* first estimate */;
1381  entersweep(L);
1382  luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1383  setpause(g);
1384  g->lastatomic = newatomic;
1385  }
1386 }
1387 
1388 
1389 /*
1390 ** Does a generational "step".
1391 ** Usually, this means doing a minor collection and setting the debt to
1392 ** make another collection when memory grows 'genminormul'% larger.
1393 **
1394 ** However, there are exceptions. If memory grows 'genmajormul'%
1395 ** larger than it was at the end of the last major collection (kept
1396 ** in 'g->GCestimate'), the function does a major collection. At the
1397 ** end, it checks whether the major collection was able to free a
1398 ** decent amount of memory (at least half the growth in memory since
1399 ** previous major collection). If so, the collector keeps its state,
1400 ** and the next collection will probably be minor again. Otherwise,
1401 ** we have what we call a "bad collection". In that case, set the field
1402 ** 'g->lastatomic' to signal that fact, so that the next collection will
1403 ** go to 'stepgenfull'.
1404 **
1405 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1406 ** in that case, do a minor collection.
1407 */
1408 static void genstep (lua_State *L, global_State *g) {
1409  if (g->lastatomic != 0) /* last collection was a bad one? */
1410  stepgenfull(L, g); /* do a full step */
1411  else {
1412  lu_mem majorbase = g->GCestimate; /* memory after last major collection */
1413  lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1414  if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1415  lu_mem numobjs = fullgen(L, g); /* do a major collection */
1416  if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1417  /* collected at least half of memory growth since last major
1418  collection; keep doing minor collections */
1419  setminordebt(g);
1420  }
1421  else { /* bad collection */
1422  g->lastatomic = numobjs; /* signal that last collection was bad */
1423  setpause(g); /* do a long wait for next (major) collection */
1424  }
1425  }
1426  else { /* regular case; do a minor collection */
1427  youngcollection(L, g);
1428  setminordebt(g);
1429  g->GCestimate = majorbase; /* preserve base value */
1430  }
1431  }
1433 }
1434 
1435 /* }====================================================== */
1436 
1437 
1438 /*
1439 ** {======================================================
1440 ** GC control
1441 ** =======================================================
1442 */
1443 
1444 
1445 /*
1446 ** Set the "time" to wait before starting a new GC cycle; cycle will
1447 ** start when memory use hits the threshold of ('estimate' * pause /
1448 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1449 ** because Lua cannot even start with less than PAUSEADJ bytes).
1450 */
1451 static void setpause (global_State *g) {
1452  l_mem threshold, debt;
1453  int pause = getgcparam(g->gcpause);
1454  l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
1455  lua_assert(estimate > 0);
1456  threshold = (pause < MAX_LMEM / estimate) /* overflow? */
1457  ? estimate * pause /* no overflow */
1458  : MAX_LMEM; /* overflow; truncate to maximum */
1459  debt = gettotalbytes(g) - threshold;
1460  if (debt > 0) debt = 0;
1461  luaE_setdebt(g, debt);
1462 }
1463 
1464 
1465 /*
1466 ** Enter first sweep phase.
1467 ** The call to 'sweeptolive' makes the pointer point to an object
1468 ** inside the list (instead of to the header), so that the real sweep do
1469 ** not need to skip objects created between "now" and the start of the
1470 ** real sweep.
1471 */
1472 static void entersweep (lua_State *L) {
1473  global_State *g = G(L);
1474  g->gcstate = GCSswpallgc;
1475  lua_assert(g->sweepgc == NULL);
1476  g->sweepgc = sweeptolive(L, &g->allgc);
1477 }
1478 
1479 
1480 /*
1481 ** Delete all objects in list 'p' until (but not including) object
1482 ** 'limit'.
1483 */
1484 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1485  while (p != limit) {
1486  GCObject *next = p->next;
1487  freeobj(L, p);
1488  p = next;
1489  }
1490 }
1491 
1492 
1493 /*
1494 ** Call all finalizers of the objects in the given Lua state, and
1495 ** then free all objects, except for the main thread.
1496 */
1498  global_State *g = G(L);
1500  separatetobefnz(g, 1); /* separate all objects with finalizers */
1501  lua_assert(g->finobj == NULL);
1503  deletelist(L, g->allgc, obj2gco(g->mainthread));
1504  deletelist(L, g->finobj, NULL);
1505  deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
1506  lua_assert(g->strt.nuse == 0);
1507 }
1508 
1509 
1510 static lu_mem atomic (lua_State *L) {
1511  global_State *g = G(L);
1512  lu_mem work = 0;
1513  GCObject *origweak, *origall;
1514  GCObject *grayagain = g->grayagain; /* save original list */
1515  g->grayagain = NULL;
1516  lua_assert(g->ephemeron == NULL && g->weak == NULL);
1518  g->gcstate = GCSatomic;
1519  markobject(g, L); /* mark running thread */
1520  /* registry and global metatables may be changed by API */
1521  markvalue(g, &g->l_registry);
1522  markmt(g); /* mark global metatables */
1523  work += propagateall(g); /* empties 'gray' list */
1524  /* remark occasional upvalues of (maybe) dead threads */
1525  work += remarkupvals(g);
1526  work += propagateall(g); /* propagate changes */
1527  g->gray = grayagain;
1528  work += propagateall(g); /* traverse 'grayagain' list */
1529  convergeephemerons(g);
1530  /* at this point, all strongly accessible objects are marked. */
1531  /* Clear values from weak tables, before checking finalizers */
1532  clearbyvalues(g, g->weak, NULL);
1533  clearbyvalues(g, g->allweak, NULL);
1534  origweak = g->weak; origall = g->allweak;
1535  separatetobefnz(g, 0); /* separate objects to be finalized */
1536  work += markbeingfnz(g); /* mark objects that will be finalized */
1537  work += propagateall(g); /* remark, to propagate 'resurrection' */
1538  convergeephemerons(g);
1539  /* at this point, all resurrected objects are marked. */
1540  /* remove dead objects from weak tables */
1541  clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
1542  clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
1543  /* clear values from resurrected weak tables */
1544  clearbyvalues(g, g->weak, origweak);
1545  clearbyvalues(g, g->allweak, origall);
1546  luaS_clearcache(g);
1547  g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
1548  lua_assert(g->gray == NULL);
1549  return work; /* estimate of slots marked by 'atomic' */
1550 }
1551 
1552 
1553 static int sweepstep (lua_State *L, global_State *g,
1554  int nextstate, GCObject **nextlist) {
1555  if (g->sweepgc) {
1556  l_mem olddebt = g->GCdebt;
1557  int count;
1558  g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1559  g->GCestimate += g->GCdebt - olddebt; /* update estimate */
1560  return count;
1561  }
1562  else { /* enter next state */
1563  g->gcstate = nextstate;
1564  g->sweepgc = nextlist;
1565  return 0; /* no work done */
1566  }
1567 }
1568 
1569 
1571  global_State *g = G(L);
1572  switch (g->gcstate) {
1573  case GCSpause: {
1574  restartcollection(g);
1575  g->gcstate = GCSpropagate;
1576  return 1;
1577  }
1578  case GCSpropagate: {
1579  if (g->gray == NULL) { /* no more gray objects? */
1580  g->gcstate = GCSenteratomic; /* finish propagate phase */
1581  return 0;
1582  }
1583  else
1584  return propagatemark(g); /* traverse one gray object */
1585  }
1586  case GCSenteratomic: {
1587  lu_mem work = atomic(L); /* work is what was traversed by 'atomic' */
1588  entersweep(L);
1589  g->GCestimate = gettotalbytes(g); /* first estimate */;
1590  return work;
1591  }
1592  case GCSswpallgc: { /* sweep "regular" objects */
1593  return sweepstep(L, g, GCSswpfinobj, &g->finobj);
1594  }
1595  case GCSswpfinobj: { /* sweep objects with finalizers */
1596  return sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1597  }
1598  case GCSswptobefnz: { /* sweep objects to be finalized */
1599  return sweepstep(L, g, GCSswpend, NULL);
1600  }
1601  case GCSswpend: { /* finish sweeps */
1602  checkSizes(L, g);
1603  g->gcstate = GCScallfin;
1604  return 0;
1605  }
1606  case GCScallfin: { /* call remaining finalizers */
1607  if (g->tobefnz && !g->gcemergency) {
1608  int n = runafewfinalizers(L, GCFINMAX);
1609  return n * GCFINALIZECOST;
1610  }
1611  else { /* emergency mode or no more finalizers */
1612  g->gcstate = GCSpause; /* finish collection */
1613  return 0;
1614  }
1615  }
1616  default: lua_assert(0); return 0;
1617  }
1618 }
1619 
1620 
1621 /*
1622 ** advances the garbage collector until it reaches a state allowed
1623 ** by 'statemask'
1624 */
1625 void luaC_runtilstate (lua_State *L, int statesmask) {
1626  global_State *g = G(L);
1627  while (!testbit(statesmask, g->gcstate))
1628  singlestep(L);
1629 }
1630 
1631 
1632 /*
1633 ** Performs a basic incremental step. The debt and step size are
1634 ** converted from bytes to "units of work"; then the function loops
1635 ** running single steps until adding that many units of work or
1636 ** finishing a cycle (pause state). Finally, it sets the debt that
1637 ** controls when next step will be performed.
1638 */
1639 static void incstep (lua_State *L, global_State *g) {
1640  int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
1641  l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1642  l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1643  ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1644  : MAX_LMEM; /* overflow; keep maximum value */
1645  do { /* repeat until pause or enough "credit" (negative debt) */
1646  lu_mem work = singlestep(L); /* perform one single step */
1647  debt -= work;
1648  } while (debt > -stepsize && g->gcstate != GCSpause);
1649  if (g->gcstate == GCSpause)
1650  setpause(g); /* pause until next cycle */
1651  else {
1652  debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
1653  luaE_setdebt(g, debt);
1654  }
1655 }
1656 
1657 /*
1658 ** performs a basic GC step if collector is running
1659 */
1661  global_State *g = G(L);
1662  lua_assert(!g->gcemergency);
1663  if (g->gcrunning) { /* running? */
1664  if(isdecGCmodegen(g))
1665  genstep(L, g);
1666  else
1667  incstep(L, g);
1668  }
1669 }
1670 
1671 
1672 /*
1673 ** Perform a full collection in incremental mode.
1674 ** Before running the collection, check 'keepinvariant'; if it is true,
1675 ** there may be some objects marked as black, so the collector has
1676 ** to sweep all objects to turn them back to white (as white has not
1677 ** changed, nothing will be collected).
1678 */
1679 static void fullinc (lua_State *L, global_State *g) {
1680  if (keepinvariant(g)) /* black objects? */
1681  entersweep(L); /* sweep everything to turn them back to white */
1682  /* finish any pending sweep phase to start a new cycle */
1684  luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
1685  /* estimate must be correct after a full GC cycle */
1687  luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1688  setpause(g);
1689 }
1690 
1691 
1692 /*
1693 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1694 ** some operations which could change the interpreter state in some
1695 ** unexpected ways (running finalizers and shrinking some structures).
1696 */
1697 void luaC_fullgc (lua_State *L, int isemergency) {
1698  global_State *g = G(L);
1699  lua_assert(!g->gcemergency);
1700  g->gcemergency = isemergency; /* set flag */
1701  if (g->gckind == KGC_INC)
1702  fullinc(L, g);
1703  else
1704  fullgen(L, g);
1705  g->gcemergency = 0;
1706 }
1707 
1708 /* }====================================================== */
1709 
1710 
#define isdecGCmodegen(g)
Definition: lgc.h:149
static void genstep(lua_State *L, global_State *g)
Definition: lgc.c:1408
lu_byte genmajormul
Definition: lstate.h:266
unsigned short callstatus
Definition: lstate.h:218
static void traverseweakvalue(global_State *g, Table *h)
Definition: lgc.c:441
lu_byte allowhook
Definition: lstate.h:309
#define getage(o)
Definition: lgc.h:116
#define tofinalize(x)
Definition: lgc.h:92
TString * source
Definition: lobject.h:549
l_mem GCdebt
Definition: lstate.h:255
#define keyiswhite(n)
Definition: lgc.c:85
#define GCSswptobefnz
Definition: lgc.h:36
void luaE_warnerror(lua_State *L, const char *where)
Definition: lstate.c:458
static int traverseudata(global_State *g, Udata *u)
Definition: lgc.c:558
void luaS_remove(lua_State *L, TString *ts)
Definition: lstring.c:176
#define LUA_VTHREAD
Definition: lobject.h:238
#define gcvalue(o)
Definition: lobject.h:281
static void clearbykeys(global_State *g, GCObject *l)
Definition: lgc.c:719
static void youngcollection(lua_State *L, global_State *g)
Definition: lgc.c:1218
#define s2v(o)
Definition: lobject.h:148
void luaC_checkfinalizer(lua_State *L, GCObject *o, Table *mt)
Definition: lgc.c:1005
Definition: lobject.h:712
void luaD_callnoyield(lua_State *L, StkId func, int nResults)
Definition: ldo.c:519
#define GCSswpfinobj
Definition: lgc.h:35
#define valiswhite(x)
Definition: lgc.c:83
#define gfasttm(g, et, e)
Definition: ltm.h:64
void luaC_step(lua_State *L)
Definition: lgc.c:1660
#define WORK2MEM
Definition: lgc.c:53
static int remarkupvals(global_State *g)
Definition: lgc.c:362
#define maskgcbits
Definition: lgc.c:67
#define obj2gco(v)
Definition: lstate.h:381
static void separatetobefnz(global_State *g, int all)
Definition: lgc.c:960
#define LUA_VCCL
Definition: lobject.h:568
Definition: ltm.h:21
#define changeage(o, f, t)
Definition: lgc.h:120
#define gnode(t, i)
Definition: ltable.h:13
static void traversestrongtable(global_State *g, Table *h)
Definition: lgc.c:518
static void restartcollection(global_State *g)
Definition: lgc.c:398
StkId stack
Definition: lstate.h:315
Definition: lobject.h:528
static int runafewfinalizers(lua_State *L, int n)
Definition: lgc.c:924
#define setgcovalue(L, obj, x)
Definition: lobject.h:285
unsigned short nuvalue
Definition: lobject.h:439
lu_byte gcpause
Definition: lstate.h:269
#define gco2t(o)
Definition: lstate.h:371
static void correctgraylists(global_State *g)
Definition: lgc.c:1172
#define gval(n)
Definition: ltable.h:14
static void convergeephemerons(global_State *g)
Definition: lgc.c:685
#define ttisstring(o)
Definition: lobject.h:339
#define gco2lcl(o)
Definition: lstate.h:367
lu_byte genminormul
Definition: lstate.h:265
static void entersweep(lua_State *L)
Definition: lgc.c:1472
static void incstep(lua_State *L, global_State *g)
Definition: lgc.c:1639
static int traverseLclosure(global_State *g, LClosure *cl)
Definition: lgc.c:599
#define GCSpause
Definition: lgc.h:39
#define iswhite(x)
Definition: lgc.h:87
static void whitelist(global_State *g, GCObject *p)
Definition: lgc.c:1123
void luaC_changemode(lua_State *L, int newmode)
Definition: lgc.c:1317
int sizep
Definition: lobject.h:537
static void enterinc(global_State *g)
Definition: lgc.c:1302
void luaF_unlinkupval(UpVal *uv)
Definition: lfunc.c:215
#define getgcparam(p)
Definition: lgc.h:135
static lu_mem propagatemark(global_State *g)
Definition: lgc.c:654
#define UNUSED(x)
Definition: llimits.h:118
#define gco2th(o)
Definition: lstate.h:373
static void sweep2old(lua_State *L, GCObject **p)
Definition: lgc.c:1046
Definition: lobject.h:63
GCObject * finobj
Definition: lstate.h:274
#define cast(t, exp)
Definition: llimits.h:123
lu_byte gcstepsize
Definition: lstate.h:271
static void stepgenfull(lua_State *L, global_State *g)
Definition: lgc.c:1368
static void checkpointer(GCObject **p, GCObject *o)
Definition: lgc.c:983
#define cast_byte(i)
Definition: llimits.h:130
#define LUA_VTABLE
Definition: lobject.h:653
void luaC_runtilstate(lua_State *L, int statesmask)
Definition: lgc.c:1625
void luaH_free(lua_State *L, Table *t)
Definition: ltable.c:594
#define setnilvalue(obj)
Definition: lobject.h:176
void luaS_clearcache(global_State *g)
Definition: lstring.c:122
#define G(L)
Definition: lstate.h:332
GCObject * tobefnz
Definition: lstate.h:280
#define markobjectN(g, t)
Definition: lgc.c:105
size_t len
Definition: lobject.h:440
#define upisopen(up)
Definition: lfunc.h:32
#define GCSswpend
Definition: lgc.h:37
static void fullinc(lua_State *L, global_State *g)
Definition: lgc.c:1679
static void freeupval(lua_State *L, UpVal *uv)
Definition: lgc.c:759
LocVar * locvars
Definition: lobject.h:548
#define CIST_FIN
Definition: lstate.h:231
static void reallymarkobject(global_State *g, GCObject *o)
Definition: lgc.c:292
#define GCSatomic
Definition: lgc.h:33
#define keepinvariant(g)
Definition: lgc.h:54
lu_byte gcstepmul
Definition: lstate.h:270
void luaC_fix(lua_State *L, GCObject *o)
Definition: lgc.c:244
void luaD_shrinkstack(lua_State *L)
Definition: ldo.c:246
UpVal * upvals[1]
Definition: lobject.h:632
#define unlikely(x)
Definition: llimits.h:162
lu_mem lastatomic
Definition: lstate.h:257
GCObject * allgc
Definition: lstate.h:272
basic_thread< reference > thread
Definition: forward.hpp:720
int sizelocvars
Definition: lobject.h:538
#define makewhite(g, x)
Definition: lgc.c:71
static int iscleared(global_State *g, const GCObject *o)
Definition: lgc.c:186
#define KGC_GEN
Definition: lstate.h:180
Upvaldesc * upvalues
Definition: lobject.h:545
static int traversethread(global_State *g, lua_State *th)
Definition: lgc.c:622
static lu_mem propagateall(global_State *g)
Definition: lgc.c:670
#define linkobjgclist(o, p)
Definition: lgc.c:159
void luaC_barrier_(lua_State *L, GCObject *o, GCObject *v)
Definition: lgc.c:209
#define isempty(v)
Definition: lobject.h:193
unsigned long lu_mem
Definition: llimits.h:30
struct Table * metatable
Definition: lobject.h:441
StkId top
Definition: lstate.h:311
static GCObject ** sweeptolive(lua_State *L, GCObject **p)
Definition: lgc.c:837
lu_byte gckind
Definition: lstate.h:264
static void finishgencycle(lua_State *L, global_State *g)
Definition: lgc.c:1204
long l_mem
Definition: llimits.h:31
#define gettotalbytes(g)
Definition: lstate.h:385
#define luaM_freemem(L, b, s)
Definition: lmem.h:55
#define LUA_TSTRING
Definition: lua.h:69
unsigned char lu_byte
Definition: llimits.h:36
#define gco2u(o)
Definition: lstate.h:366
static lu_mem singlestep(lua_State *L)
Definition: lgc.c:1570
static GCObject ** correctgraylist(GCObject **p)
Definition: lgc.c:1139
int nuse
Definition: lstate.h:185
constexpr size_t count()
Definition: core.h:960
static void GCTM(lua_State *L)
Definition: lgc.c:893
Definition: lobject.h:604
#define testbit(x, b)
Definition: lgc.h:67
static int traverseephemeron(global_State *g, Table *h, int inv)
Definition: lgc.c:475
#define nw2black(x)
Definition: lgc.h:99
struct lua_State * mainthread
Definition: lstate.h:292
TValue * v
Definition: lobject.h:607
#define cast_void(i)
Definition: llimits.h:125
#define sizeCclosure(n)
Definition: lfunc.h:14
static void clearbyvalues(global_State *g, GCObject *l, GCObject *f)
Definition: lgc.c:738
static void atomic2gen(lua_State *L, global_State *g)
Definition: lgc.c:1259
TValue uv
Definition: lobject.h:428
#define LUA_VSHRSTR
Definition: lobject.h:336
static void callallpendingfinalizers(lua_State *L)
Definition: lgc.c:936
CallInfo * ci
Definition: lstate.h:313
const TValue * luaT_gettmbyobj(lua_State *L, const TValue *o, TMS event)
Definition: ltm.c:71
#define allocsizenode(t)
Definition: ltable.h:31
#define gcvalueN(o)
Definition: lgc.c:91
static GCObject ** sweeplist(lua_State *L, GCObject **p, int countin, int *countout)
Definition: lgc.c:810
#define luaM_newobject(L, tag, s)
Definition: lmem.h:64
lu_byte currentwhite
Definition: lstate.h:262
GCObject * finobjold1
Definition: lstate.h:288
UValue uv[1]
Definition: lobject.h:443
#define GCScallfin
Definition: lgc.h:38
static void setminordebt(global_State *g)
Definition: lgc.c:1342
#define log2maxs(t)
Definition: llimits.h:60
#define l_setbit(x, b)
Definition: lgc.h:65
#define next(ls)
Definition: llex.c:32
#define LUA_VLNGSTR
Definition: lobject.h:337
#define linkgclist(o, p)
Definition: lgc.c:146
#define isdead(g, v)
Definition: lgc.h:96
#define markkey(g, n)
Definition: lgc.c:97
#define gco2p(o)
Definition: lstate.h:372
#define markobject(g, t)
Definition: lgc.c:99
static int traverseproto(global_State *g, Proto *f)
Definition: lgc.c:573
static void clearkey(Node *n)
Definition: lgc.c:172
int luaD_pcall(lua_State *L, Pfunc func, void *u, ptrdiff_t old_top, ptrdiff_t ef)
Definition: ldo.c:742
static GCObject ** findlast(GCObject **p)
Definition: lgc.c:946
#define luaM_free(L, b)
Definition: lmem.h:56
union UpVal::@22 u
TString * varname
Definition: lobject.h:504
TValue * array
Definition: lobject.h:717
static lu_mem fullgen(lua_State *L, global_State *g)
Definition: lgc.c:1332
#define gco2ccl(o)
Definition: lstate.h:368
GCObject * gclist
Definition: lobject.h:442
struct Table * mt[LUA_NUMTAGS]
Definition: lstate.h:295
int dummy
Definition: lstrlib.c:1347
void luaS_resize(lua_State *L, int nsize)
Definition: lstring.c:97
GCObject * finobjsur
Definition: lstate.h:287
Definition: ltm.h:22
#define set2black(x)
Definition: lgc.c:79
#define G_OLD0
Definition: lgc.h:108
struct Proto ** p
Definition: lobject.h:544
GCObject * weak
Definition: lstate.h:277
static void freeobj(lua_State *L, GCObject *o)
Definition: lgc.c:766
GCObject * gray
Definition: lstate.h:275
static lu_mem markbeingfnz(global_State *g)
Definition: lgc.c:340
static void setpause(global_State *g)
Definition: lgc.c:1451
#define lua_assert(c)
Definition: llimits.h:101
#define setdeadkey(n)
Definition: lobject.h:752
void luaE_setdebt(global_State *g, l_mem debt)
Definition: lstate.c:89
#define GCSpropagate
Definition: lgc.h:31
#define gco2upv(o)
Definition: lstate.h:374
static void linkgclist_(GCObject *o, GCObject **pnext, GCObject **list)
Definition: lgc.c:148
#define LUA_NUMTAGS
Definition: lua.h:415
#define GCSWEEPMAX
Definition: lgc.c:35
#define sizeudata(nuv, nb)
Definition: lobject.h:474
int size
Definition: lstate.h:186
void luaF_freeproto(lua_State *L, Proto *f)
Definition: lfunc.c:273
struct Table * metatable
Definition: lobject.h:720
GCObject ** sweepgc
Definition: lstate.h:273
#define G_TOUCHED2
Definition: lgc.h:112
#define gco2ts(o)
Definition: lstate.h:364
static void checkSizes(lua_State *L, global_State *g)
Definition: lgc.c:857
int sizek
Definition: lobject.h:534
GCObject * survival
Definition: lstate.h:283
GCObject * grayagain
Definition: lstate.h:276
#define gnodelast(h)
Definition: lgc.c:122
#define PAUSEADJ
Definition: lgc.c:60
#define G_OLD1
Definition: lgc.h:109
UpVal * openupval
Definition: lstate.h:316
GCObject * allweak
Definition: lstate.h:279
#define MAX_LMEM
Definition: llimits.h:50
struct lua_State * twups
Definition: lstate.h:290
struct lua_State * twups
Definition: lstate.h:318
#define setage(o, a)
Definition: lgc.h:117
#define LUA_VUPVAL
Definition: lobject.h:562
#define LUA_VPROTO
Definition: lobject.h:485
GCObject * firstold1
Definition: lstate.h:286
void luaC_freeallobjects(lua_State *L)
Definition: lgc.c:1497
GCObject * fixedgc
Definition: lstate.h:281
#define isdeadm(ow, m)
Definition: lgc.h:95
TValue upvalue[1]
Definition: lobject.h:625
void luaE_freethread(lua_State *L, lua_State *L1)
Definition: lstate.c:353
#define savestack(L, p)
Definition: ldo.h:35
#define GCFINMAX
Definition: lgc.c:40
#define isblack(x)
Definition: lgc.h:88
#define G_NEW
Definition: lgc.h:106
#define LUA_VLCL
Definition: lobject.h:566
GCObject * old1
Definition: lstate.h:284
GCObject * luaC_newobj(lua_State *L, int tt, size_t sz)
Definition: lgc.c:259
GCObject * gclist
Definition: lobject.h:721
#define keyisnil(node)
Definition: lobject.h:731
#define sizenode(t)
Definition: lobject.h:766
static void dothecall(lua_State *L, void *ud)
Definition: lgc.c:887
#define LUA_OK
Definition: lua.h:49
Definition: lobject.h:674
#define G_SURVIVAL
Definition: lgc.h:107
#define setempty(v)
Definition: lobject.h:201
#define bitmask(b)
Definition: lgc.h:63
static void cleargraylists(global_State *g)
Definition: lgc.c:389
Definition: lobject.h:437
stringtable strt
Definition: lstate.h:258
lu_byte gcstate
Definition: lstate.h:263
int stacksize
Definition: lstate.h:325
TString * name
Definition: lobject.h:492
static GCObject * udata2finalize(global_State *g)
Definition: lgc.c:872
#define G_OLD
Definition: lgc.h:110
#define FINALIZEDBIT
Definition: lgc.h:78
#define KGC_INC
Definition: lstate.h:179
struct Proto * p
Definition: lobject.h:631
#define issweepphase(g)
Definition: lgc.h:42
static GCObject ** getgclist(GCObject *o)
Definition: lgc.c:125
static lu_mem traversetable(global_State *g, Table *h)
Definition: lgc.c:537
#define svalue(o)
Definition: lobject.h:383
LUAI_FUNC unsigned int luaH_realasize(const Table *t)
Definition: ltable.c:209
#define notm(tm)
Definition: ltm.h:61
#define isintwups(L)
Definition: lfunc.h:22
unsigned int alimit
Definition: lobject.h:716
#define isold(o)
Definition: lgc.h:118
int sizeupvalues
Definition: lobject.h:533
void luaC_barrierback_(lua_State *L, GCObject *o)
Definition: lgc.c:231
#define gckeyN(n)
Definition: lobject.h:742
#define resetbit(x, b)
Definition: lgc.h:66
lu_byte gcemergency
Definition: lstate.h:268
static lu_mem entergen(lua_State *L, global_State *g)
Definition: lgc.c:1287
static void correctpointers(global_State *g, GCObject *o)
Definition: lgc.c:993
static int running
Definition: MQTTClient.c:281
TValue * k
Definition: lobject.h:542
#define sizeLclosure(n)
Definition: lfunc.h:17
struct UpVal::@22::@23 open
#define set2gray(x)
Definition: lgc.c:75
GCObject * ephemeron
Definition: lstate.h:278
#define novariant(t)
Definition: lobject.h:76
static lu_mem atomic(lua_State *L)
Definition: lgc.c:1510
void luaC_fullgc(lua_State *L, int isemergency)
Definition: lgc.c:1697
#define GCSenteratomic
Definition: lgc.h:32
static void genlink(global_State *g, GCObject *o)
Definition: lgc.c:425
#define markvalue(g, o)
Definition: lgc.c:94
GCObject * reallyold
Definition: lstate.h:285
lu_byte gcrunning
Definition: lstate.h:267
#define otherwhite(g)
Definition: lgc.h:94
#define isgray(x)
Definition: lgc.h:89
#define GCSswpallgc
Definition: lgc.h:34
#define G_TOUCHED1
Definition: lgc.h:111
#define LUA_VUSERDATA
Definition: lobject.h:407
lu_mem GCestimate
Definition: lstate.h:256
#define sizelstring(l)
Definition: lstring.h:26
static void markmt(global_State *g)
Definition: lgc.c:330
GCObject * finobjrold
Definition: lstate.h:289
#define setobj2s(L, o1, o2)
Definition: lobject.h:127
#define GCFINALIZECOST
Definition: lgc.c:46
static void deletelist(lua_State *L, GCObject *p, GCObject *limit)
Definition: lgc.c:1484
static int traverseCclosure(global_State *g, CClosure *cl)
Definition: lgc.c:588
static GCObject ** sweepgen(lua_State *L, global_State *g, GCObject **p, GCObject *limit, GCObject **pfirstold1)
Definition: lgc.c:1082
TValue l_registry
Definition: lstate.h:259
static void markold(global_State *g, GCObject *from, GCObject *to)
Definition: lgc.c:1188
#define luaC_white(g)
Definition: lgc.h:102
static int sweepstep(lua_State *L, global_State *g, int nextstate, GCObject **nextlist)
Definition: lgc.c:1553


plotjuggler
Author(s): Davide Faconti
autogenerated on Sun Dec 6 2020 03:48:09