lcode.c
Go to the documentation of this file.
1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <limits.h>
14 #include <math.h>
15 #include <stdlib.h>
16 
17 #include "lua.h"
18 
19 #include "lcode.h"
20 #include "ldebug.h"
21 #include "ldo.h"
22 #include "lgc.h"
23 #include "llex.h"
24 #include "lmem.h"
25 #include "lobject.h"
26 #include "lopcodes.h"
27 #include "lparser.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "lvm.h"
31 
32 
33 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
34 #define MAXREGS 255
35 
36 
37 #define hasjumps(e) ((e)->t != (e)->f)
38 
39 
40 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
41 
42 
43 
44 /* semantic error */
45 l_noret luaK_semerror (LexState *ls, const char *msg) {
46  ls->t.token = 0; /* remove "near <token>" from final message */
47  luaX_syntaxerror(ls, msg);
48 }
49 
50 
51 /*
52 ** If expression is a numeric constant, fills 'v' with its value
53 ** and returns 1. Otherwise, returns 0.
54 */
55 static int tonumeral (const expdesc *e, TValue *v) {
56  if (hasjumps(e))
57  return 0; /* not a numeral */
58  switch (e->k) {
59  case VKINT:
60  if (v) setivalue(v, e->u.ival);
61  return 1;
62  case VKFLT:
63  if (v) setfltvalue(v, e->u.nval);
64  return 1;
65  default: return 0;
66  }
67 }
68 
69 
70 /*
71 ** Get the constant value from a constant expression
72 */
73 static TValue *const2val (FuncState *fs, const expdesc *e) {
74  lua_assert(e->k == VCONST);
75  return &fs->ls->dyd->actvar.arr[e->u.info].k;
76 }
77 
78 
79 /*
80 ** If expression is a constant, fills 'v' with its value
81 ** and returns 1. Otherwise, returns 0.
82 */
83 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
84  if (hasjumps(e))
85  return 0; /* not a constant */
86  switch (e->k) {
87  case VFALSE:
88  setbfvalue(v);
89  return 1;
90  case VTRUE:
91  setbtvalue(v);
92  return 1;
93  case VNIL:
94  setnilvalue(v);
95  return 1;
96  case VKSTR: {
97  setsvalue(fs->ls->L, v, e->u.strval);
98  return 1;
99  }
100  case VCONST: {
101  setobj(fs->ls->L, v, const2val(fs, e));
102  return 1;
103  }
104  default: return tonumeral(e, v);
105  }
106 }
107 
108 
109 /*
110 ** Return the previous instruction of the current code. If there
111 ** may be a jump target between the current instruction and the
112 ** previous one, return an invalid instruction (to avoid wrong
113 ** optimizations).
114 */
116  static const Instruction invalidinstruction = ~(Instruction)0;
117  if (fs->pc > fs->lasttarget)
118  return &fs->f->code[fs->pc - 1]; /* previous instruction */
119  else
120  return cast(Instruction*, &invalidinstruction);
121 }
122 
123 
124 /*
125 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
126 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
127 ** range of previous instruction instead of emitting a new one. (For
128 ** instance, 'local a; local b' will generate a single opcode.)
129 */
130 void luaK_nil (FuncState *fs, int from, int n) {
131  int l = from + n - 1; /* last register to set nil */
132  Instruction *previous = previousinstruction(fs);
133  if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
134  int pfrom = GETARG_A(*previous); /* get previous range */
135  int pl = pfrom + GETARG_B(*previous);
136  if ((pfrom <= from && from <= pl + 1) ||
137  (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
138  if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
139  if (pl > l) l = pl; /* l = max(l, pl) */
140  SETARG_A(*previous, from);
141  SETARG_B(*previous, l - from);
142  return;
143  } /* else go through */
144  }
145  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
146 }
147 
148 
149 /*
150 ** Gets the destination address of a jump instruction. Used to traverse
151 ** a list of jumps.
152 */
153 static int getjump (FuncState *fs, int pc) {
154  int offset = GETARG_sJ(fs->f->code[pc]);
155  if (offset == NO_JUMP) /* point to itself represents end of list */
156  return NO_JUMP; /* end of list */
157  else
158  return (pc+1)+offset; /* turn offset into absolute position */
159 }
160 
161 
162 /*
163 ** Fix jump instruction at position 'pc' to jump to 'dest'.
164 ** (Jump addresses are relative in Lua)
165 */
166 static void fixjump (FuncState *fs, int pc, int dest) {
167  Instruction *jmp = &fs->f->code[pc];
168  int offset = dest - (pc + 1);
169  lua_assert(dest != NO_JUMP);
170  if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
171  luaX_syntaxerror(fs->ls, "control structure too long");
172  lua_assert(GET_OPCODE(*jmp) == OP_JMP);
173  SETARG_sJ(*jmp, offset);
174 }
175 
176 
177 /*
178 ** Concatenate jump-list 'l2' into jump-list 'l1'
179 */
180 void luaK_concat (FuncState *fs, int *l1, int l2) {
181  if (l2 == NO_JUMP) return; /* nothing to concatenate? */
182  else if (*l1 == NO_JUMP) /* no original list? */
183  *l1 = l2; /* 'l1' points to 'l2' */
184  else {
185  int list = *l1;
186  int next;
187  while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
188  list = next;
189  fixjump(fs, list, l2); /* last element links to 'l2' */
190  }
191 }
192 
193 
194 /*
195 ** Create a jump instruction and return its position, so its destination
196 ** can be fixed later (with 'fixjump').
197 */
198 int luaK_jump (FuncState *fs) {
199  return codesJ(fs, OP_JMP, NO_JUMP, 0);
200 }
201 
202 
203 /*
204 ** Code a 'return' instruction
205 */
206 void luaK_ret (FuncState *fs, int first, int nret) {
207  OpCode op;
208  switch (nret) {
209  case 0: op = OP_RETURN0; break;
210  case 1: op = OP_RETURN1; break;
211  default: op = OP_RETURN; break;
212  }
213  luaK_codeABC(fs, op, first, nret + 1, 0);
214 }
215 
216 
217 /*
218 ** Code a "conditional jump", that is, a test or comparison opcode
219 ** followed by a jump. Return jump position.
220 */
221 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
222  luaK_codeABCk(fs, op, A, B, C, k);
223  return luaK_jump(fs);
224 }
225 
226 
227 /*
228 ** returns current 'pc' and marks it as a jump target (to avoid wrong
229 ** optimizations with consecutive instructions not in the same basic block).
230 */
232  fs->lasttarget = fs->pc;
233  return fs->pc;
234 }
235 
236 
237 /*
238 ** Returns the position of the instruction "controlling" a given
239 ** jump (that is, its condition), or the jump itself if it is
240 ** unconditional.
241 */
242 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
243  Instruction *pi = &fs->f->code[pc];
244  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
245  return pi-1;
246  else
247  return pi;
248 }
249 
250 
251 /*
252 ** Patch destination register for a TESTSET instruction.
253 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
254 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
255 ** register. Otherwise, change instruction to a simple 'TEST' (produces
256 ** no register value)
257 */
258 static int patchtestreg (FuncState *fs, int node, int reg) {
259  Instruction *i = getjumpcontrol(fs, node);
260  if (GET_OPCODE(*i) != OP_TESTSET)
261  return 0; /* cannot patch other instructions */
262  if (reg != NO_REG && reg != GETARG_B(*i))
263  SETARG_A(*i, reg);
264  else {
265  /* no register to put value or register already has the value;
266  change instruction to simple test */
267  *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
268  }
269  return 1;
270 }
271 
272 
273 /*
274 ** Traverse a list of tests ensuring no one produces a value
275 */
276 static void removevalues (FuncState *fs, int list) {
277  for (; list != NO_JUMP; list = getjump(fs, list))
278  patchtestreg(fs, list, NO_REG);
279 }
280 
281 
282 /*
283 ** Traverse a list of tests, patching their destination address and
284 ** registers: tests producing values jump to 'vtarget' (and put their
285 ** values in 'reg'), other tests jump to 'dtarget'.
286 */
287 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
288  int dtarget) {
289  while (list != NO_JUMP) {
290  int next = getjump(fs, list);
291  if (patchtestreg(fs, list, reg))
292  fixjump(fs, list, vtarget);
293  else
294  fixjump(fs, list, dtarget); /* jump to default target */
295  list = next;
296  }
297 }
298 
299 
300 /*
301 ** Path all jumps in 'list' to jump to 'target'.
302 ** (The assert means that we cannot fix a jump to a forward address
303 ** because we only know addresses once code is generated.)
304 */
305 void luaK_patchlist (FuncState *fs, int list, int target) {
306  lua_assert(target <= fs->pc);
307  patchlistaux(fs, list, target, NO_REG, target);
308 }
309 
310 
311 void luaK_patchtohere (FuncState *fs, int list) {
312  int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
313  luaK_patchlist(fs, list, hr);
314 }
315 
316 
317 /*
318 ** MAXimum number of successive Instructions WiTHout ABSolute line
319 ** information.
320 */
321 #if !defined(MAXIWTHABS)
322 #define MAXIWTHABS 120
323 #endif
324 
325 
326 /* limit for difference between lines in relative line info. */
327 #define LIMLINEDIFF 0x80
328 
329 
330 /*
331 ** Save line info for a new instruction. If difference from last line
332 ** does not fit in a byte, of after that many instructions, save a new
333 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
334 ** in 'lineinfo' signals the existence of this absolute information.)
335 ** Otherwise, store the difference from last line in 'lineinfo'.
336 */
337 static void savelineinfo (FuncState *fs, Proto *f, int line) {
338  int linedif = line - fs->previousline;
339  int pc = fs->pc - 1; /* last instruction coded */
340  if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) {
342  f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
343  f->abslineinfo[fs->nabslineinfo].pc = pc;
344  f->abslineinfo[fs->nabslineinfo++].line = line;
345  linedif = ABSLINEINFO; /* signal that there is absolute information */
346  fs->iwthabs = 0; /* restart counter */
347  }
348  luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
349  MAX_INT, "opcodes");
350  f->lineinfo[pc] = linedif;
351  fs->previousline = line; /* last line saved */
352 }
353 
354 
355 /*
356 ** Remove line information from the last instruction.
357 ** If line information for that instruction is absolute, set 'iwthabs'
358 ** above its max to force the new (replacing) instruction to have
359 ** absolute line info, too.
360 */
361 static void removelastlineinfo (FuncState *fs) {
362  Proto *f = fs->f;
363  int pc = fs->pc - 1; /* last instruction coded */
364  if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
365  fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
366  fs->iwthabs--; /* undo previous increment */
367  }
368  else { /* absolute line information */
369  lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
370  fs->nabslineinfo--; /* remove it */
371  fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
372  }
373 }
374 
375 
376 /*
377 ** Remove the last instruction created, correcting line information
378 ** accordingly.
379 */
380 static void removelastinstruction (FuncState *fs) {
381  removelastlineinfo(fs);
382  fs->pc--;
383 }
384 
385 
386 /*
387 ** Emit instruction 'i', checking for array sizes and saving also its
388 ** line information. Return 'i' position.
389 */
391  Proto *f = fs->f;
392  /* put new instruction in code array */
393  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
394  MAX_INT, "opcodes");
395  f->code[fs->pc++] = i;
396  savelineinfo(fs, f, fs->ls->lastline);
397  return fs->pc - 1; /* index of new instruction */
398 }
399 
400 
401 /*
402 ** Format and emit an 'iABC' instruction. (Assertions check consistency
403 ** of parameters versus opcode.)
404 */
405 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
406  lua_assert(getOpMode(o) == iABC);
407  lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
408  c <= MAXARG_C && (k & ~1) == 0);
409  return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
410 }
411 
412 
413 /*
414 ** Format and emit an 'iABx' instruction.
415 */
416 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
417  lua_assert(getOpMode(o) == iABx);
418  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
419  return luaK_code(fs, CREATE_ABx(o, a, bc));
420 }
421 
422 
423 /*
424 ** Format and emit an 'iAsBx' instruction.
425 */
426 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
427  unsigned int b = bc + OFFSET_sBx;
428  lua_assert(getOpMode(o) == iAsBx);
429  lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
430  return luaK_code(fs, CREATE_ABx(o, a, b));
431 }
432 
433 
434 /*
435 ** Format and emit an 'isJ' instruction.
436 */
437 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
438  unsigned int j = sj + OFFSET_sJ;
439  lua_assert(getOpMode(o) == isJ);
440  lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
441  return luaK_code(fs, CREATE_sJ(o, j, k));
442 }
443 
444 
445 /*
446 ** Emit an "extra argument" instruction (format 'iAx')
447 */
448 static int codeextraarg (FuncState *fs, int a) {
449  lua_assert(a <= MAXARG_Ax);
450  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
451 }
452 
453 
454 /*
455 ** Emit a "load constant" instruction, using either 'OP_LOADK'
456 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
457 ** instruction with "extra argument".
458 */
459 static int luaK_codek (FuncState *fs, int reg, int k) {
460  if (k <= MAXARG_Bx)
461  return luaK_codeABx(fs, OP_LOADK, reg, k);
462  else {
463  int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
464  codeextraarg(fs, k);
465  return p;
466  }
467 }
468 
469 
470 /*
471 ** Check register-stack level, keeping track of its maximum size
472 ** in field 'maxstacksize'
473 */
474 void luaK_checkstack (FuncState *fs, int n) {
475  int newstack = fs->freereg + n;
476  if (newstack > fs->f->maxstacksize) {
477  if (newstack >= MAXREGS)
478  luaX_syntaxerror(fs->ls,
479  "function or expression needs too many registers");
480  fs->f->maxstacksize = cast_byte(newstack);
481  }
482 }
483 
484 
485 /*
486 ** Reserve 'n' registers in register stack
487 */
488 void luaK_reserveregs (FuncState *fs, int n) {
489  luaK_checkstack(fs, n);
490  fs->freereg += n;
491 }
492 
493 
494 /*
495 ** Free register 'reg', if it is neither a constant index nor
496 ** a local variable.
497 )
498 */
499 static void freereg (FuncState *fs, int reg) {
500  if (reg >= luaY_nvarstack(fs)) {
501  fs->freereg--;
502  lua_assert(reg == fs->freereg);
503  }
504 }
505 
506 
507 /*
508 ** Free two registers in proper order
509 */
510 static void freeregs (FuncState *fs, int r1, int r2) {
511  if (r1 > r2) {
512  freereg(fs, r1);
513  freereg(fs, r2);
514  }
515  else {
516  freereg(fs, r2);
517  freereg(fs, r1);
518  }
519 }
520 
521 
522 /*
523 ** Free register used by expression 'e' (if any)
524 */
525 static void freeexp (FuncState *fs, expdesc *e) {
526  if (e->k == VNONRELOC)
527  freereg(fs, e->u.info);
528 }
529 
530 
531 /*
532 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
533 ** order.
534 */
535 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
536  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
537  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
538  freeregs(fs, r1, r2);
539 }
540 
541 
542 /*
543 ** Add constant 'v' to prototype's list of constants (field 'k').
544 ** Use scanner's table to cache position of constants in constant list
545 ** and try to reuse constants. Because some values should not be used
546 ** as keys (nil cannot be a key, integer keys can collapse with float
547 ** keys), the caller must provide a useful 'key' for indexing the cache.
548 */
549 static int addk (FuncState *fs, TValue *key, TValue *v) {
550  lua_State *L = fs->ls->L;
551  Proto *f = fs->f;
552  TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
553  int k, oldsize;
554  if (ttisinteger(idx)) { /* is there an index there? */
555  k = cast_int(ivalue(idx));
556  /* correct value? (warning: must distinguish floats from integers!) */
557  if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
558  luaV_rawequalobj(&f->k[k], v))
559  return k; /* reuse index */
560  }
561  /* constant not found; create a new entry */
562  oldsize = f->sizek;
563  k = fs->nk;
564  /* numerical value does not need GC barrier;
565  table has no metatable, so it does not need to invalidate cache */
566  setivalue(idx, k);
567  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
568  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
569  setobj(L, &f->k[k], v);
570  fs->nk++;
571  luaC_barrier(L, f, v);
572  return k;
573 }
574 
575 
576 /*
577 ** Add a string to list of constants and return its index.
578 */
579 static int stringK (FuncState *fs, TString *s) {
580  TValue o;
581  setsvalue(fs->ls->L, &o, s);
582  return addk(fs, &o, &o); /* use string itself as key */
583 }
584 
585 
586 /*
587 ** Add an integer to list of constants and return its index.
588 ** Integers use userdata as keys to avoid collision with floats with
589 ** same value; conversion to 'void*' is used only for hashing, so there
590 ** are no "precision" problems.
591 */
592 static int luaK_intK (FuncState *fs, lua_Integer n) {
593  TValue k, o;
595  setivalue(&o, n);
596  return addk(fs, &k, &o);
597 }
598 
599 /*
600 ** Add a float to list of constants and return its index.
601 */
602 static int luaK_numberK (FuncState *fs, lua_Number r) {
603  TValue o;
604  setfltvalue(&o, r);
605  return addk(fs, &o, &o); /* use number itself as key */
606 }
607 
608 
609 /*
610 ** Add a false to list of constants and return its index.
611 */
612 static int boolF (FuncState *fs) {
613  TValue o;
614  setbfvalue(&o);
615  return addk(fs, &o, &o); /* use boolean itself as key */
616 }
617 
618 
619 /*
620 ** Add a true to list of constants and return its index.
621 */
622 static int boolT (FuncState *fs) {
623  TValue o;
624  setbtvalue(&o);
625  return addk(fs, &o, &o); /* use boolean itself as key */
626 }
627 
628 
629 /*
630 ** Add nil to list of constants and return its index.
631 */
632 static int nilK (FuncState *fs) {
633  TValue k, v;
634  setnilvalue(&v);
635  /* cannot use nil as key; instead use table itself to represent nil */
636  sethvalue(fs->ls->L, &k, fs->ls->h);
637  return addk(fs, &k, &v);
638 }
639 
640 
641 /*
642 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
643 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
644 ** overflows in the hidden addition inside 'int2sC'.
645 */
646 static int fitsC (lua_Integer i) {
647  return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
648 }
649 
650 
651 /*
652 ** Check whether 'i' can be stored in an 'sBx' operand.
653 */
654 static int fitsBx (lua_Integer i) {
655  return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
656 }
657 
658 
659 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
660  if (fitsBx(i))
661  luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
662  else
663  luaK_codek(fs, reg, luaK_intK(fs, i));
664 }
665 
666 
667 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
668  lua_Integer fi;
669  if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
670  luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
671  else
672  luaK_codek(fs, reg, luaK_numberK(fs, f));
673 }
674 
675 
676 /*
677 ** Convert a constant in 'v' into an expression description 'e'
678 */
679 static void const2exp (TValue *v, expdesc *e) {
680  switch (ttypetag(v)) {
681  case LUA_VNUMINT:
682  e->k = VKINT; e->u.ival = ivalue(v);
683  break;
684  case LUA_VNUMFLT:
685  e->k = VKFLT; e->u.nval = fltvalue(v);
686  break;
687  case LUA_VFALSE:
688  e->k = VFALSE;
689  break;
690  case LUA_VTRUE:
691  e->k = VTRUE;
692  break;
693  case LUA_VNIL:
694  e->k = VNIL;
695  break;
696  case LUA_VSHRSTR: case LUA_VLNGSTR:
697  e->k = VKSTR; e->u.strval = tsvalue(v);
698  break;
699  default: lua_assert(0);
700  }
701 }
702 
703 
704 /*
705 ** Fix an expression to return the number of results 'nresults'.
706 ** 'e' must be a multi-ret expression (function call or vararg).
707 */
708 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
709  Instruction *pc = &getinstruction(fs, e);
710  if (e->k == VCALL) /* expression is an open function call? */
711  SETARG_C(*pc, nresults + 1);
712  else {
713  lua_assert(e->k == VVARARG);
714  SETARG_C(*pc, nresults + 1);
715  SETARG_A(*pc, fs->freereg);
716  luaK_reserveregs(fs, 1);
717  }
718 }
719 
720 
721 /*
722 ** Convert a VKSTR to a VK
723 */
724 static void str2K (FuncState *fs, expdesc *e) {
725  lua_assert(e->k == VKSTR);
726  e->u.info = stringK(fs, e->u.strval);
727  e->k = VK;
728 }
729 
730 
731 /*
732 ** Fix an expression to return one result.
733 ** If expression is not a multi-ret expression (function call or
734 ** vararg), it already returns one result, so nothing needs to be done.
735 ** Function calls become VNONRELOC expressions (as its result comes
736 ** fixed in the base register of the call), while vararg expressions
737 ** become VRELOC (as OP_VARARG puts its results where it wants).
738 ** (Calls are created returning one result, so that does not need
739 ** to be fixed.)
740 */
742  if (e->k == VCALL) { /* expression is an open function call? */
743  /* already returns 1 value */
744  lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
745  e->k = VNONRELOC; /* result has fixed position */
746  e->u.info = GETARG_A(getinstruction(fs, e));
747  }
748  else if (e->k == VVARARG) {
749  SETARG_C(getinstruction(fs, e), 2);
750  e->k = VRELOC; /* can relocate its simple result */
751  }
752 }
753 
754 
755 /*
756 ** Ensure that expression 'e' is not a variable (nor a constant).
757 ** (Expression still may have jump lists.)
758 */
760  switch (e->k) {
761  case VCONST: {
762  const2exp(const2val(fs, e), e);
763  break;
764  }
765  case VLOCAL: { /* already in a register */
766  e->u.info = e->u.var.sidx;
767  e->k = VNONRELOC; /* becomes a non-relocatable value */
768  break;
769  }
770  case VUPVAL: { /* move value to some (pending) register */
771  e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
772  e->k = VRELOC;
773  break;
774  }
775  case VINDEXUP: {
776  e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
777  e->k = VRELOC;
778  break;
779  }
780  case VINDEXI: {
781  freereg(fs, e->u.ind.t);
782  e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
783  e->k = VRELOC;
784  break;
785  }
786  case VINDEXSTR: {
787  freereg(fs, e->u.ind.t);
788  e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
789  e->k = VRELOC;
790  break;
791  }
792  case VINDEXED: {
793  freeregs(fs, e->u.ind.t, e->u.ind.idx);
794  e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
795  e->k = VRELOC;
796  break;
797  }
798  case VVARARG: case VCALL: {
799  luaK_setoneret(fs, e);
800  break;
801  }
802  default: break; /* there is one value available (somewhere) */
803  }
804 }
805 
806 
807 /*
808 ** Ensures expression value is in register 'reg' (and therefore
809 ** 'e' will become a non-relocatable expression).
810 ** (Expression still may have jump lists.)
811 */
812 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
813  luaK_dischargevars(fs, e);
814  switch (e->k) {
815  case VNIL: {
816  luaK_nil(fs, reg, 1);
817  break;
818  }
819  case VFALSE: {
820  luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
821  break;
822  }
823  case VTRUE: {
824  luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
825  break;
826  }
827  case VKSTR: {
828  str2K(fs, e);
829  } /* FALLTHROUGH */
830  case VK: {
831  luaK_codek(fs, reg, e->u.info);
832  break;
833  }
834  case VKFLT: {
835  luaK_float(fs, reg, e->u.nval);
836  break;
837  }
838  case VKINT: {
839  luaK_int(fs, reg, e->u.ival);
840  break;
841  }
842  case VRELOC: {
843  Instruction *pc = &getinstruction(fs, e);
844  SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
845  break;
846  }
847  case VNONRELOC: {
848  if (reg != e->u.info)
849  luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
850  break;
851  }
852  default: {
853  lua_assert(e->k == VJMP);
854  return; /* nothing to do... */
855  }
856  }
857  e->u.info = reg;
858  e->k = VNONRELOC;
859 }
860 
861 
862 /*
863 ** Ensures expression value is in any register.
864 ** (Expression still may have jump lists.)
865 */
866 static void discharge2anyreg (FuncState *fs, expdesc *e) {
867  if (e->k != VNONRELOC) { /* no fixed register yet? */
868  luaK_reserveregs(fs, 1); /* get a register */
869  discharge2reg(fs, e, fs->freereg-1); /* put value there */
870  }
871 }
872 
873 
874 static int code_loadbool (FuncState *fs, int A, OpCode op) {
875  luaK_getlabel(fs); /* those instructions may be jump targets */
876  return luaK_codeABC(fs, op, A, 0, 0);
877 }
878 
879 
880 /*
881 ** check whether list has any jump that do not produce a value
882 ** or produce an inverted value
883 */
884 static int need_value (FuncState *fs, int list) {
885  for (; list != NO_JUMP; list = getjump(fs, list)) {
886  Instruction i = *getjumpcontrol(fs, list);
887  if (GET_OPCODE(i) != OP_TESTSET) return 1;
888  }
889  return 0; /* not found */
890 }
891 
892 
893 /*
894 ** Ensures final expression result (which includes results from its
895 ** jump lists) is in register 'reg'.
896 ** If expression has jumps, need to patch these jumps either to
897 ** its final position or to "load" instructions (for those tests
898 ** that do not produce values).
899 */
900 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
901  discharge2reg(fs, e, reg);
902  if (e->k == VJMP) /* expression itself is a test? */
903  luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
904  if (hasjumps(e)) {
905  int final; /* position after whole expression */
906  int p_f = NO_JUMP; /* position of an eventual LOAD false */
907  int p_t = NO_JUMP; /* position of an eventual LOAD true */
908  if (need_value(fs, e->t) || need_value(fs, e->f)) {
909  int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
910  p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
911  p_t = code_loadbool(fs, reg, OP_LOADTRUE);
912  /* jump around these booleans if 'e' is not a test */
913  luaK_patchtohere(fs, fj);
914  }
915  final = luaK_getlabel(fs);
916  patchlistaux(fs, e->f, final, reg, p_f);
917  patchlistaux(fs, e->t, final, reg, p_t);
918  }
919  e->f = e->t = NO_JUMP;
920  e->u.info = reg;
921  e->k = VNONRELOC;
922 }
923 
924 
925 /*
926 ** Ensures final expression result is in next available register.
927 */
929  luaK_dischargevars(fs, e);
930  freeexp(fs, e);
931  luaK_reserveregs(fs, 1);
932  exp2reg(fs, e, fs->freereg - 1);
933 }
934 
935 
936 /*
937 ** Ensures final expression result is in some (any) register
938 ** and return that register.
939 */
941  luaK_dischargevars(fs, e);
942  if (e->k == VNONRELOC) { /* expression already has a register? */
943  if (!hasjumps(e)) /* no jumps? */
944  return e->u.info; /* result is already in a register */
945  if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
946  exp2reg(fs, e, e->u.info); /* put final result in it */
947  return e->u.info;
948  }
949  }
950  luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
951  return e->u.info;
952 }
953 
954 
955 /*
956 ** Ensures final expression result is either in a register
957 ** or in an upvalue.
958 */
960  if (e->k != VUPVAL || hasjumps(e))
961  luaK_exp2anyreg(fs, e);
962 }
963 
964 
965 /*
966 ** Ensures final expression result is either in a register
967 ** or it is a constant.
968 */
970  if (hasjumps(e))
971  luaK_exp2anyreg(fs, e);
972  else
973  luaK_dischargevars(fs, e);
974 }
975 
976 
977 /*
978 ** Try to make 'e' a K expression with an index in the range of R/K
979 ** indices. Return true iff succeeded.
980 */
981 static int luaK_exp2K (FuncState *fs, expdesc *e) {
982  if (!hasjumps(e)) {
983  int info;
984  switch (e->k) { /* move constants to 'k' */
985  case VTRUE: info = boolT(fs); break;
986  case VFALSE: info = boolF(fs); break;
987  case VNIL: info = nilK(fs); break;
988  case VKINT: info = luaK_intK(fs, e->u.ival); break;
989  case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
990  case VKSTR: info = stringK(fs, e->u.strval); break;
991  case VK: info = e->u.info; break;
992  default: return 0; /* not a constant */
993  }
994  if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
995  e->k = VK; /* make expression a 'K' expression */
996  e->u.info = info;
997  return 1;
998  }
999  }
1000  /* else, expression doesn't fit; leave it unchanged */
1001  return 0;
1002 }
1003 
1004 
1005 /*
1006 ** Ensures final expression result is in a valid R/K index
1007 ** (that is, it is either in a register or in 'k' with an index
1008 ** in the range of R/K indices).
1009 ** Returns 1 iff expression is K.
1010 */
1012  if (luaK_exp2K(fs, e))
1013  return 1;
1014  else { /* not a constant in the right range: put it in a register */
1015  luaK_exp2anyreg(fs, e);
1016  return 0;
1017  }
1018 }
1019 
1020 
1021 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1022  expdesc *ec) {
1023  int k = luaK_exp2RK(fs, ec);
1024  luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1025 }
1026 
1027 
1028 /*
1029 ** Generate code to store result of expression 'ex' into variable 'var'.
1030 */
1032  switch (var->k) {
1033  case VLOCAL: {
1034  freeexp(fs, ex);
1035  exp2reg(fs, ex, var->u.var.sidx); /* compute 'ex' into proper place */
1036  return;
1037  }
1038  case VUPVAL: {
1039  int e = luaK_exp2anyreg(fs, ex);
1040  luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1041  break;
1042  }
1043  case VINDEXUP: {
1044  codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1045  break;
1046  }
1047  case VINDEXI: {
1048  codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1049  break;
1050  }
1051  case VINDEXSTR: {
1052  codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1053  break;
1054  }
1055  case VINDEXED: {
1056  codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1057  break;
1058  }
1059  default: lua_assert(0); /* invalid var kind to store */
1060  }
1061  freeexp(fs, ex);
1062 }
1063 
1064 
1065 /*
1066 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1067 */
1068 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1069  int ereg;
1070  luaK_exp2anyreg(fs, e);
1071  ereg = e->u.info; /* register where 'e' was placed */
1072  freeexp(fs, e);
1073  e->u.info = fs->freereg; /* base register for op_self */
1074  e->k = VNONRELOC; /* self expression has a fixed register */
1075  luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1076  codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1077  freeexp(fs, key);
1078 }
1079 
1080 
1081 /*
1082 ** Negate condition 'e' (where 'e' is a comparison).
1083 */
1084 static void negatecondition (FuncState *fs, expdesc *e) {
1085  Instruction *pc = getjumpcontrol(fs, e->u.info);
1087  GET_OPCODE(*pc) != OP_TEST);
1088  SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1089 }
1090 
1091 
1092 /*
1093 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1094 ** is true, code will jump if 'e' is true.) Return jump position.
1095 ** Optimize when 'e' is 'not' something, inverting the condition
1096 ** and removing the 'not'.
1097 */
1098 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1099  if (e->k == VRELOC) {
1100  Instruction ie = getinstruction(fs, e);
1101  if (GET_OPCODE(ie) == OP_NOT) {
1102  removelastinstruction(fs); /* remove previous OP_NOT */
1103  return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1104  }
1105  /* else go through */
1106  }
1107  discharge2anyreg(fs, e);
1108  freeexp(fs, e);
1109  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1110 }
1111 
1112 
1113 /*
1114 ** Emit code to go through if 'e' is true, jump otherwise.
1115 */
1117  int pc; /* pc of new jump */
1118  luaK_dischargevars(fs, e);
1119  switch (e->k) {
1120  case VJMP: { /* condition? */
1121  negatecondition(fs, e); /* jump when it is false */
1122  pc = e->u.info; /* save jump position */
1123  break;
1124  }
1125  case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1126  pc = NO_JUMP; /* always true; do nothing */
1127  break;
1128  }
1129  default: {
1130  pc = jumponcond(fs, e, 0); /* jump when false */
1131  break;
1132  }
1133  }
1134  luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1135  luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1136  e->t = NO_JUMP;
1137 }
1138 
1139 
1140 /*
1141 ** Emit code to go through if 'e' is false, jump otherwise.
1142 */
1144  int pc; /* pc of new jump */
1145  luaK_dischargevars(fs, e);
1146  switch (e->k) {
1147  case VJMP: {
1148  pc = e->u.info; /* already jump if true */
1149  break;
1150  }
1151  case VNIL: case VFALSE: {
1152  pc = NO_JUMP; /* always false; do nothing */
1153  break;
1154  }
1155  default: {
1156  pc = jumponcond(fs, e, 1); /* jump if true */
1157  break;
1158  }
1159  }
1160  luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1161  luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1162  e->f = NO_JUMP;
1163 }
1164 
1165 
1166 /*
1167 ** Code 'not e', doing constant folding.
1168 */
1169 static void codenot (FuncState *fs, expdesc *e) {
1170  switch (e->k) {
1171  case VNIL: case VFALSE: {
1172  e->k = VTRUE; /* true == not nil == not false */
1173  break;
1174  }
1175  case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1176  e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1177  break;
1178  }
1179  case VJMP: {
1180  negatecondition(fs, e);
1181  break;
1182  }
1183  case VRELOC:
1184  case VNONRELOC: {
1185  discharge2anyreg(fs, e);
1186  freeexp(fs, e);
1187  e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1188  e->k = VRELOC;
1189  break;
1190  }
1191  default: lua_assert(0); /* cannot happen */
1192  }
1193  /* interchange true and false lists */
1194  { int temp = e->f; e->f = e->t; e->t = temp; }
1195  removevalues(fs, e->f); /* values are useless when negated */
1196  removevalues(fs, e->t);
1197 }
1198 
1199 
1200 /*
1201 ** Check whether expression 'e' is a small literal string
1202 */
1203 static int isKstr (FuncState *fs, expdesc *e) {
1204  return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1205  ttisshrstring(&fs->f->k[e->u.info]));
1206 }
1207 
1208 /*
1209 ** Check whether expression 'e' is a literal integer.
1210 */
1212  return (e->k == VKINT && !hasjumps(e));
1213 }
1214 
1215 
1216 /*
1217 ** Check whether expression 'e' is a literal integer in
1218 ** proper range to fit in register C
1219 */
1220 static int isCint (expdesc *e) {
1221  return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1222 }
1223 
1224 
1225 /*
1226 ** Check whether expression 'e' is a literal integer in
1227 ** proper range to fit in register sC
1228 */
1229 static int isSCint (expdesc *e) {
1230  return luaK_isKint(e) && fitsC(e->u.ival);
1231 }
1232 
1233 
1234 /*
1235 ** Check whether expression 'e' is a literal integer or float in
1236 ** proper range to fit in a register (sB or sC).
1237 */
1238 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1239  lua_Integer i;
1240  if (e->k == VKINT)
1241  i = e->u.ival;
1242  else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1243  *isfloat = 1;
1244  else
1245  return 0; /* not a number */
1246  if (!hasjumps(e) && fitsC(i)) {
1247  *pi = int2sC(cast_int(i));
1248  return 1;
1249  }
1250  else
1251  return 0;
1252 }
1253 
1254 
1255 /*
1256 ** Create expression 't[k]'. 't' must have its final result already in a
1257 ** register or upvalue. Upvalues can only be indexed by literal strings.
1258 ** Keys can be literal strings in the constant table or arbitrary
1259 ** values in registers.
1260 */
1262  if (k->k == VKSTR)
1263  str2K(fs, k);
1264  lua_assert(!hasjumps(t) &&
1265  (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1266  if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1267  luaK_exp2anyreg(fs, t); /* put it in a register */
1268  if (t->k == VUPVAL) {
1269  t->u.ind.t = t->u.info; /* upvalue index */
1270  t->u.ind.idx = k->u.info; /* literal string */
1271  t->k = VINDEXUP;
1272  }
1273  else {
1274  /* register index of the table */
1275  t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info;
1276  if (isKstr(fs, k)) {
1277  t->u.ind.idx = k->u.info; /* literal string */
1278  t->k = VINDEXSTR;
1279  }
1280  else if (isCint(k)) {
1281  t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1282  t->k = VINDEXI;
1283  }
1284  else {
1285  t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1286  t->k = VINDEXED;
1287  }
1288  }
1289 }
1290 
1291 
1292 /*
1293 ** Return false if folding can raise an error.
1294 ** Bitwise operations need operands convertible to integers; division
1295 ** operations cannot have 0 as divisor.
1296 */
1297 static int validop (int op, TValue *v1, TValue *v2) {
1298  switch (op) {
1299  case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1300  case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1301  lua_Integer i;
1302  return (tointegerns(v1, &i) && tointegerns(v2, &i));
1303  }
1304  case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1305  return (nvalue(v2) != 0);
1306  default: return 1; /* everything else is valid */
1307  }
1308 }
1309 
1310 
1311 /*
1312 ** Try to "constant-fold" an operation; return 1 iff successful.
1313 ** (In this case, 'e1' has the final result.)
1314 */
1315 static int constfolding (FuncState *fs, int op, expdesc *e1,
1316  const expdesc *e2) {
1317  TValue v1, v2, res;
1318  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1319  return 0; /* non-numeric operands or not safe to fold */
1320  luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1321  if (ttisinteger(&res)) {
1322  e1->k = VKINT;
1323  e1->u.ival = ivalue(&res);
1324  }
1325  else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1326  lua_Number n = fltvalue(&res);
1327  if (luai_numisnan(n) || n == 0)
1328  return 0;
1329  e1->k = VKFLT;
1330  e1->u.nval = n;
1331  }
1332  return 1;
1333 }
1334 
1335 
1336 /*
1337 ** Emit code for unary expressions that "produce values"
1338 ** (everything but 'not').
1339 ** Expression to produce final result will be encoded in 'e'.
1340 */
1341 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1342  int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1343  freeexp(fs, e);
1344  e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1345  e->k = VRELOC; /* all those operations are relocatable */
1346  luaK_fixline(fs, line);
1347 }
1348 
1349 
1350 /*
1351 ** Emit code for binary expressions that "produce values"
1352 ** (everything but logical operators 'and'/'or' and comparison
1353 ** operators).
1354 ** Expression to produce final result will be encoded in 'e1'.
1355 */
1356 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1357  OpCode op, int v2, int flip, int line,
1358  OpCode mmop, TMS event) {
1359  int v1 = luaK_exp2anyreg(fs, e1);
1360  int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1361  freeexps(fs, e1, e2);
1362  e1->u.info = pc;
1363  e1->k = VRELOC; /* all those operations are relocatable */
1364  luaK_fixline(fs, line);
1365  luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1366  luaK_fixline(fs, line);
1367 }
1368 
1369 
1370 /*
1371 ** Emit code for binary expressions that "produce values" over
1372 ** two registers.
1373 */
1374 static void codebinexpval (FuncState *fs, OpCode op,
1375  expdesc *e1, expdesc *e2, int line) {
1376  int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
1377  lua_assert(OP_ADD <= op && op <= OP_SHR);
1378  finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
1379  cast(TMS, (op - OP_ADD) + TM_ADD));
1380 }
1381 
1382 
1383 /*
1384 ** Code binary operators with immediate operands.
1385 */
1386 static void codebini (FuncState *fs, OpCode op,
1387  expdesc *e1, expdesc *e2, int flip, int line,
1388  TMS event) {
1389  int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1390  lua_assert(e2->k == VKINT);
1391  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1392 }
1393 
1394 
1395 /* Try to code a binary operator negating its second operand.
1396 ** For the metamethod, 2nd operand must keep its original value.
1397 */
1398 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1399  OpCode op, int line, TMS event) {
1400  if (!luaK_isKint(e2))
1401  return 0; /* not an integer constant */
1402  else {
1403  lua_Integer i2 = e2->u.ival;
1404  if (!(fitsC(i2) && fitsC(-i2)))
1405  return 0; /* not in the proper range */
1406  else { /* operating a small integer constant */
1407  int v2 = cast_int(i2);
1408  finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1409  /* correct metamethod argument */
1410  SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1411  return 1; /* successfully coded */
1412  }
1413  }
1414 }
1415 
1416 
1417 static void swapexps (expdesc *e1, expdesc *e2) {
1418  expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1419 }
1420 
1421 
1422 /*
1423 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1424 ** constant in the proper range, use variant opcodes with K operands.
1425 */
1426 static void codearith (FuncState *fs, BinOpr opr,
1427  expdesc *e1, expdesc *e2, int flip, int line) {
1428  TMS event = cast(TMS, opr + TM_ADD);
1429  if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
1430  int v2 = e2->u.info; /* K index */
1431  OpCode op = cast(OpCode, opr + OP_ADDK);
1432  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1433  }
1434  else { /* 'e2' is neither an immediate nor a K operand */
1435  OpCode op = cast(OpCode, opr + OP_ADD);
1436  if (flip)
1437  swapexps(e1, e2); /* back to original order */
1438  codebinexpval(fs, op, e1, e2, line); /* use standard operators */
1439  }
1440 }
1441 
1442 
1443 /*
1444 ** Code commutative operators ('+', '*'). If first operand is a
1445 ** numeric constant, change order of operands to try to use an
1446 ** immediate or K operator.
1447 */
1448 static void codecommutative (FuncState *fs, BinOpr op,
1449  expdesc *e1, expdesc *e2, int line) {
1450  int flip = 0;
1451  if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1452  swapexps(e1, e2); /* change order */
1453  flip = 1;
1454  }
1455  if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1456  codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
1457  else
1458  codearith(fs, op, e1, e2, flip, line);
1459 }
1460 
1461 
1462 /*
1463 ** Code bitwise operations; they are all associative, so the function
1464 ** tries to put an integer constant as the 2nd operand (a K operand).
1465 */
1466 static void codebitwise (FuncState *fs, BinOpr opr,
1467  expdesc *e1, expdesc *e2, int line) {
1468  int flip = 0;
1469  int v2;
1470  OpCode op;
1471  if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
1472  swapexps(e1, e2); /* 'e2' will be the constant operand */
1473  flip = 1;
1474  }
1475  else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
1476  op = cast(OpCode, opr + OP_ADD);
1477  codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
1478  return;
1479  }
1480  v2 = e2->u.info; /* index in K array */
1481  op = cast(OpCode, opr + OP_ADDK);
1482  lua_assert(ttisinteger(&fs->f->k[v2]));
1483  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
1484  cast(TMS, opr + TM_ADD));
1485 }
1486 
1487 
1488 /*
1489 ** Emit code for order comparisons. When using an immediate operand,
1490 ** 'isfloat' tells whether the original value was a float.
1491 */
1492 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
1493  int r1, r2;
1494  int im;
1495  int isfloat = 0;
1496  if (isSCnumber(e2, &im, &isfloat)) {
1497  /* use immediate operand */
1498  r1 = luaK_exp2anyreg(fs, e1);
1499  r2 = im;
1500  op = cast(OpCode, (op - OP_LT) + OP_LTI);
1501  }
1502  else if (isSCnumber(e1, &im, &isfloat)) {
1503  /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1504  r1 = luaK_exp2anyreg(fs, e2);
1505  r2 = im;
1506  op = (op == OP_LT) ? OP_GTI : OP_GEI;
1507  }
1508  else { /* regular case, compare two registers */
1509  r1 = luaK_exp2anyreg(fs, e1);
1510  r2 = luaK_exp2anyreg(fs, e2);
1511  }
1512  freeexps(fs, e1, e2);
1513  e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1514  e1->k = VJMP;
1515 }
1516 
1517 
1518 /*
1519 ** Emit code for equality comparisons ('==', '~=').
1520 ** 'e1' was already put as RK by 'luaK_infix'.
1521 */
1522 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1523  int r1, r2;
1524  int im;
1525  int isfloat = 0; /* not needed here, but kept for symmetry */
1526  OpCode op;
1527  if (e1->k != VNONRELOC) {
1528  lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1529  swapexps(e1, e2);
1530  }
1531  r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1532  if (isSCnumber(e2, &im, &isfloat)) {
1533  op = OP_EQI;
1534  r2 = im; /* immediate operand */
1535  }
1536  else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
1537  op = OP_EQK;
1538  r2 = e2->u.info; /* constant index */
1539  }
1540  else {
1541  op = OP_EQ; /* will compare two registers */
1542  r2 = luaK_exp2anyreg(fs, e2);
1543  }
1544  freeexps(fs, e1, e2);
1545  e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1546  e1->k = VJMP;
1547 }
1548 
1549 
1550 /*
1551 ** Apply prefix operation 'op' to expression 'e'.
1552 */
1553 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1554  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1555  luaK_dischargevars(fs, e);
1556  switch (op) {
1557  case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1558  if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1559  break;
1560  /* else */ /* FALLTHROUGH */
1561  case OPR_LEN:
1562  codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1563  break;
1564  case OPR_NOT: codenot(fs, e); break;
1565  default: lua_assert(0);
1566  }
1567 }
1568 
1569 
1570 /*
1571 ** Process 1st operand 'v' of binary operation 'op' before reading
1572 ** 2nd operand.
1573 */
1574 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1575  luaK_dischargevars(fs, v);
1576  switch (op) {
1577  case OPR_AND: {
1578  luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1579  break;
1580  }
1581  case OPR_OR: {
1582  luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1583  break;
1584  }
1585  case OPR_CONCAT: {
1586  luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1587  break;
1588  }
1589  case OPR_ADD: case OPR_SUB:
1590  case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1591  case OPR_MOD: case OPR_POW:
1592  case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1593  case OPR_SHL: case OPR_SHR: {
1594  if (!tonumeral(v, NULL))
1595  luaK_exp2anyreg(fs, v);
1596  /* else keep numeral, which may be folded with 2nd operand */
1597  break;
1598  }
1599  case OPR_EQ: case OPR_NE: {
1600  if (!tonumeral(v, NULL))
1601  luaK_exp2RK(fs, v);
1602  /* else keep numeral, which may be an immediate operand */
1603  break;
1604  }
1605  case OPR_LT: case OPR_LE:
1606  case OPR_GT: case OPR_GE: {
1607  int dummy, dummy2;
1608  if (!isSCnumber(v, &dummy, &dummy2))
1609  luaK_exp2anyreg(fs, v);
1610  /* else keep numeral, which may be an immediate operand */
1611  break;
1612  }
1613  default: lua_assert(0);
1614  }
1615 }
1616 
1617 /*
1618 ** Create code for '(e1 .. e2)'.
1619 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1620 ** because concatenation is right associative), merge both CONCATs.
1621 */
1622 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1623  Instruction *ie2 = previousinstruction(fs);
1624  if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1625  int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1626  lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1627  freeexp(fs, e2);
1628  SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1629  SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1630  }
1631  else { /* 'e2' is not a concatenation */
1632  luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1633  freeexp(fs, e2);
1634  luaK_fixline(fs, line);
1635  }
1636 }
1637 
1638 
1639 /*
1640 ** Finalize code for binary operation, after reading 2nd operand.
1641 */
1643  expdesc *e1, expdesc *e2, int line) {
1644  luaK_dischargevars(fs, e2);
1645  if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1646  return; /* done by folding */
1647  switch (opr) {
1648  case OPR_AND: {
1649  lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1650  luaK_concat(fs, &e2->f, e1->f);
1651  *e1 = *e2;
1652  break;
1653  }
1654  case OPR_OR: {
1655  lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1656  luaK_concat(fs, &e2->t, e1->t);
1657  *e1 = *e2;
1658  break;
1659  }
1660  case OPR_CONCAT: { /* e1 .. e2 */
1661  luaK_exp2nextreg(fs, e2);
1662  codeconcat(fs, e1, e2, line);
1663  break;
1664  }
1665  case OPR_ADD: case OPR_MUL: {
1666  codecommutative(fs, opr, e1, e2, line);
1667  break;
1668  }
1669  case OPR_SUB: {
1670  if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1671  break; /* coded as (r1 + -I) */
1672  /* ELSE */
1673  } /* FALLTHROUGH */
1674  case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1675  codearith(fs, opr, e1, e2, 0, line);
1676  break;
1677  }
1678  case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1679  codebitwise(fs, opr, e1, e2, line);
1680  break;
1681  }
1682  case OPR_SHL: {
1683  if (isSCint(e1)) {
1684  swapexps(e1, e2);
1685  codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1686  }
1687  else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1688  /* coded as (r1 >> -I) */;
1689  }
1690  else /* regular case (two registers) */
1691  codebinexpval(fs, OP_SHL, e1, e2, line);
1692  break;
1693  }
1694  case OPR_SHR: {
1695  if (isSCint(e2))
1696  codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1697  else /* regular case (two registers) */
1698  codebinexpval(fs, OP_SHR, e1, e2, line);
1699  break;
1700  }
1701  case OPR_EQ: case OPR_NE: {
1702  codeeq(fs, opr, e1, e2);
1703  break;
1704  }
1705  case OPR_LT: case OPR_LE: {
1706  OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1707  codeorder(fs, op, e1, e2);
1708  break;
1709  }
1710  case OPR_GT: case OPR_GE: {
1711  /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1712  OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1713  swapexps(e1, e2);
1714  codeorder(fs, op, e1, e2);
1715  break;
1716  }
1717  default: lua_assert(0);
1718  }
1719 }
1720 
1721 
1722 /*
1723 ** Change line information associated with current position, by removing
1724 ** previous info and adding it again with new line.
1725 */
1726 void luaK_fixline (FuncState *fs, int line) {
1727  removelastlineinfo(fs);
1728  savelineinfo(fs, fs->f, line);
1729 }
1730 
1731 
1732 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1733  Instruction *inst = &fs->f->code[pc];
1734  int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1735  int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1736  int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1737  int k = (extra > 0); /* true iff needs extra argument */
1738  *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1739  *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1740 }
1741 
1742 
1743 /*
1744 ** Emit a SETLIST instruction.
1745 ** 'base' is register that keeps table;
1746 ** 'nelems' is #table plus those to be stored now;
1747 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1748 ** table (or LUA_MULTRET to add up to stack top).
1749 */
1750 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1751  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1752  if (tostore == LUA_MULTRET)
1753  tostore = 0;
1754  if (nelems <= MAXARG_C)
1755  luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1756  else {
1757  int extra = nelems / (MAXARG_C + 1);
1758  nelems %= (MAXARG_C + 1);
1759  luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1760  codeextraarg(fs, extra);
1761  }
1762  fs->freereg = base + 1; /* free registers with list values */
1763 }
1764 
1765 
1766 /*
1767 ** return the final target of a jump (skipping jumps to jumps)
1768 */
1769 static int finaltarget (Instruction *code, int i) {
1770  int count;
1771  for (count = 0; count < 100; count++) { /* avoid infinite loops */
1772  Instruction pc = code[i];
1773  if (GET_OPCODE(pc) != OP_JMP)
1774  break;
1775  else
1776  i += GETARG_sJ(pc) + 1;
1777  }
1778  return i;
1779 }
1780 
1781 
1782 /*
1783 ** Do a final pass over the code of a function, doing small peephole
1784 ** optimizations and adjustments.
1785 */
1787  int i;
1788  Proto *p = fs->f;
1789  for (i = 0; i < fs->pc; i++) {
1790  Instruction *pc = &p->code[i];
1791  lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1792  switch (GET_OPCODE(*pc)) {
1793  case OP_RETURN0: case OP_RETURN1: {
1794  if (!(fs->needclose || p->is_vararg))
1795  break; /* no extra work */
1796  /* else use OP_RETURN to do the extra work */
1797  SET_OPCODE(*pc, OP_RETURN);
1798  } /* FALLTHROUGH */
1799  case OP_RETURN: case OP_TAILCALL: {
1800  if (fs->needclose)
1801  SETARG_k(*pc, 1); /* signal that it needs to close */
1802  if (p->is_vararg)
1803  SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1804  break;
1805  }
1806  case OP_JMP: {
1807  int target = finaltarget(p->code, i);
1808  fixjump(fs, i, target);
1809  break;
1810  }
1811  default: break;
1812  }
1813  }
1814 }
signed char ls_byte
Definition: llimits.h:37
Definition: lcode.h:37
struct Dyndata * dyd
Definition: llex.h:75
static void exp2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.c:900
#define LIMLINEDIFF
Definition: lcode.c:327
struct LexState * ls
Definition: lparser.h:146
static void freereg(FuncState *fs, int reg)
Definition: lcode.c:499
#define LUA_OPSHL
Definition: lua.h:215
static void codenot(FuncState *fs, expdesc *e)
Definition: lcode.c:1169
#define LUA_OPIDIV
Definition: lua.h:211
#define nvalue(o)
Definition: lobject.h:306
#define OFFSET_sC
Definition: lopcodes.h:98
l_noret luaX_syntaxerror(LexState *ls, const char *msg)
Definition: llex.c:119
int luaK_codeAsBx(FuncState *fs, OpCode o, int a, int bc)
Definition: lcode.c:426
void luaK_exp2anyregup(FuncState *fs, expdesc *e)
Definition: lcode.c:959
#define LUA_OPDIV
Definition: lua.h:210
#define ttisinteger(o)
Definition: lobject.h:304
void luaK_reserveregs(FuncState *fs, int n)
Definition: lcode.c:488
#define isIT(i)
Definition: lopcodes.h:383
Definition: lcode.h:28
int luaO_rawarith(lua_State *L, int op, const TValue *p1, const TValue *p2, TValue *res)
Definition: lobject.c:89
void luaK_indexed(FuncState *fs, expdesc *t, expdesc *k)
Definition: lcode.c:1261
static void discharge2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.c:866
#define MAXARG_Ax
Definition: lopcodes.h:83
lu_byte t
Definition: lparser.h:76
Definition: lcode.h:36
Definition: lparser.h:56
Definition: lcode.h:32
static int boolT(FuncState *fs)
Definition: lcode.c:622
static void codearith(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int flip, int line)
Definition: lcode.c:1426
int luaK_exp2const(FuncState *fs, const expdesc *e, TValue *v)
Definition: lcode.c:83
Definition: lobject.h:528
static void codebitwise(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1466
#define LUA_MULTRET
Definition: lua.h:36
Definition: lparser.h:32
int luaK_exp2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.c:940
static void codebinexpval(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1374
lua_Number nval
Definition: lparser.h:71
#define foldbinop(op)
Definition: lcode.h:45
int pc
Definition: lparser.h:148
#define ttisshrstring(o)
Definition: lobject.h:340
int nk
Definition: lparser.h:151
#define LUA_VNUMINT
Definition: lobject.h:299
#define LUA_OPUNM
Definition: lua.h:217
#define cast_voidp(i)
Definition: llimits.h:126
Definition: lparser.h:54
int lasttarget
Definition: lparser.h:149
static int patchtestreg(FuncState *fs, int node, int reg)
Definition: lcode.c:258
#define cast_uint(i)
Definition: llimits.h:129
static int validop(int op, TValue *v1, TValue *v2)
Definition: lcode.c:1297
Definition: ltm.h:35
int token
Definition: llex.h:57
Definition: lobject.h:63
#define cast(t, exp)
Definition: llimits.h:123
TValue k
Definition: lparser.h:103
#define fltvalue(o)
Definition: lobject.h:308
static int finishbinexpneg(FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int line, TMS event)
Definition: lcode.c:1398
static void removelastinstruction(FuncState *fs)
Definition: lcode.c:380
#define cast_byte(i)
Definition: llimits.h:130
#define l_noret
Definition: llimits.h:178
#define setnilvalue(obj)
Definition: lobject.h:176
static int condjump(FuncState *fs, OpCode op, int A, int B, int C, int k)
Definition: lcode.c:221
#define MAXREGS
Definition: lcode.c:34
static void freeregs(FuncState *fs, int r1, int r2)
Definition: lcode.c:510
Definition: lcode.h:29
#define GET_OPCODE(i)
Definition: lopcodes.h:114
Definition: lcode.h:39
#define LUA_VNUMFLT
Definition: lobject.h:300
Definition: lopcodes.h:32
Definition: lparser.h:33
AbsLineInfo * abslineinfo
Definition: lobject.h:547
#define SET_OPCODE(i, o)
Definition: lopcodes.h:115
#define luaC_barrier(L, p, v)
Definition: lgc.h:165
static int cond(LexState *ls)
Definition: lparser.c:1396
void luaK_setoneret(FuncState *fs, expdesc *e)
Definition: lcode.c:741
int luaK_code(FuncState *fs, Instruction i)
Definition: lcode.c:390
static void codebini(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int flip, int line, TMS event)
Definition: lcode.c:1386
void luaK_self(FuncState *fs, expdesc *e, expdesc *key)
Definition: lcode.c:1068
void luaK_setreturns(FuncState *fs, expdesc *e, int nresults)
Definition: lcode.c:708
#define luai_numisnan(a)
Definition: llimits.h:332
Token t
Definition: llex.h:68
static void codecommutative(FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1448
ls_byte * lineinfo
Definition: lobject.h:546
#define int2sC(i)
Definition: lopcodes.h:100
Definition: lcode.h:32
OpCode
Definition: lopcodes.h:196
static int nilK(FuncState *fs)
Definition: lcode.c:632
int info
Definition: lparser.h:73
Definition: lcode.h:36
void luaK_goiftrue(FuncState *fs, expdesc *e)
Definition: lcode.c:1116
void luaK_storevar(FuncState *fs, expdesc *var, expdesc *ex)
Definition: lcode.c:1031
void luaK_infix(FuncState *fs, BinOpr op, expdesc *v)
Definition: lcode.c:1574
void luaK_dischargevars(FuncState *fs, expdesc *e)
Definition: lcode.c:759
static void const2exp(TValue *v, expdesc *e)
Definition: lcode.c:679
#define tointegerns(o, i)
Definition: lvm.h:67
int luaK_jump(FuncState *fs)
Definition: lcode.c:198
void luaK_checkstack(FuncState *fs, int n)
Definition: lcode.c:474
void luaK_nil(FuncState *fs, int from, int n)
Definition: lcode.c:130
Definition: lopcodes.h:32
void luaK_int(FuncState *fs, int reg, lua_Integer i)
Definition: lcode.c:659
Definition: lopcodes.h:32
#define CREATE_ABx(o, a, bc)
Definition: lopcodes.h:162
#define sethvalue(L, obj, x)
Definition: lobject.h:659
Definition: lparser.h:38
static void removelastlineinfo(FuncState *fs)
Definition: lcode.c:361
LUA_INTEGER lua_Integer
Definition: lua.h:94
static void codeconcat(FuncState *fs, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1622
Definition: lparser.h:31
int luaO_ceillog2(unsigned int x)
Definition: lobject.c:35
static void codeeq(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2)
Definition: lcode.c:1522
union expdesc::@25 u
Definition: lparser.h:58
#define LUA_OPADD
Definition: lua.h:205
constexpr size_t count()
Definition: core.h:960
Definition: lvm.h:44
#define GETARG_C(i)
Definition: lopcodes.h:132
Definition: lparser.h:41
static int isCint(expdesc *e)
Definition: lcode.c:1220
#define LUA_VNIL
Definition: lobject.h:159
static void fixjump(FuncState *fs, int pc, int dest)
Definition: lcode.c:166
TValue * luaH_set(lua_State *L, Table *t, const TValue *key)
Definition: ltable.c:762
UnOpr
Definition: lcode.h:51
#define LUA_VFALSE
Definition: lobject.h:215
Definition: ltm.h:25
#define GETARG_A(i)
Definition: lopcodes.h:125
#define LUA_OPBOR
Definition: lua.h:213
#define LUA_OPBNOT
Definition: lua.h:218
Definition: lcode.h:31
#define LUA_VSHRSTR
Definition: lobject.h:336
int luaK_isKint(expdesc *e)
Definition: lcode.c:1211
#define SETARG_C(i, v)
Definition: lopcodes.h:134
static void codeorder(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2)
Definition: lcode.c:1492
Definition: lcode.h:36
#define LUA_OPBXOR
Definition: lua.h:214
void luaK_finish(FuncState *fs)
Definition: lcode.c:1786
#define LUA_VTRUE
Definition: lobject.h:216
void luaK_patchlist(FuncState *fs, int list, int target)
Definition: lcode.c:305
#define ivalue(o)
Definition: lobject.h:309
auto var(V &&v)
Definition: sol.hpp:16526
#define l_castS2U(i)
Definition: llimits.h:139
static void patchlistaux(FuncState *fs, int list, int vtarget, int reg, int dtarget)
Definition: lcode.c:287
#define MAXARG_B
Definition: lopcodes.h:96
#define LFIELDS_PER_FLUSH
Definition: lopcodes.h:390
static TValue * const2val(FuncState *fs, const expdesc *e)
Definition: lcode.c:73
#define GETARG_k(i)
Definition: lopcodes.h:137
#define LUA_OPBAND
Definition: lua.h:212
#define setbfvalue(obj)
Definition: lobject.h:226
int luaK_exp2RK(FuncState *fs, expdesc *e)
Definition: lcode.c:1011
#define next(ls)
Definition: llex.c:32
l_noret luaK_semerror(LexState *ls, const char *msg)
Definition: lcode.c:45
#define LUA_VLNGSTR
Definition: lobject.h:337
#define NO_REG
Definition: lopcodes.h:182
static void freeexp(FuncState *fs, expdesc *e)
Definition: lcode.c:525
Vardesc * arr
Definition: lparser.h:129
int sizeabslineinfo
Definition: lobject.h:539
#define testTMode(m)
Definition: lopcodes.h:372
static int isKstr(FuncState *fs, expdesc *e)
Definition: lcode.c:1203
BinOpr
Definition: lcode.h:26
struct expdesc::@25::@27 var
int dummy
Definition: lstrlib.c:1347
Instruction * code
Definition: lobject.h:543
#define OFFSET_sJ
Definition: lopcodes.h:92
int luaK_codeABx(FuncState *fs, OpCode o, int a, unsigned int bc)
Definition: lcode.c:416
static int jumponcond(FuncState *fs, expdesc *e, int cond)
Definition: lcode.c:1098
static int codeextraarg(FuncState *fs, int a)
Definition: lcode.c:448
static int getjump(FuncState *fs, int pc)
Definition: lcode.c:153
Definition: lcode.h:28
lu_byte needclose
Definition: lparser.h:161
lu_byte maxstacksize
Definition: lobject.h:532
#define ttypetag(o)
Definition: lobject.h:80
Definition: lcode.h:51
int sizelineinfo
Definition: lobject.h:536
static void negatecondition(FuncState *fs, expdesc *e)
Definition: lcode.c:1084
#define SETARG_B(i, v)
Definition: lopcodes.h:130
Definition: lcode.h:28
#define ABSLINEINFO
Definition: ldebug.h:27
Definition: lcode.h:31
Definition: lcode.h:28
Definition: lparser.h:29
#define tsvalue(o)
Definition: lobject.h:345
void luaK_prefix(FuncState *fs, UnOpr op, expdesc *e, int line)
Definition: lcode.c:1553
#define lua_assert(c)
Definition: llimits.h:101
Definition: lcode.h:39
#define hasjumps(e)
Definition: lcode.c:37
#define LUA_OPSHR
Definition: lua.h:216
lu_byte freereg
Definition: lparser.h:159
static void codeunexpval(FuncState *fs, OpCode op, expdesc *e, int line)
Definition: lcode.c:1341
#define setpvalue(obj, x)
Definition: lobject.h:417
#define GETARG_B(i)
Definition: lopcodes.h:128
static int luaK_codek(FuncState *fs, int reg, int k)
Definition: lcode.c:459
#define setivalue(obj, x)
Definition: lobject.h:320
Definition: lparser.h:28
#define setobj(L, obj1, obj2)
Definition: lobject.h:114
Definition: ltm.h:36
Definition: lcode.h:29
void luaK_ret(FuncState *fs, int first, int nret)
Definition: lcode.c:206
#define CREATE_Ax(o, a)
Definition: lopcodes.h:166
static void str2K(FuncState *fs, expdesc *e)
Definition: lcode.c:724
static Instruction * getjumpcontrol(FuncState *fs, int pc)
Definition: lcode.c:242
static void removevalues(FuncState *fs, int list)
Definition: lcode.c:276
#define getOpMode(m)
Definition: lopcodes.h:370
static int code_loadbool(FuncState *fs, int A, OpCode op)
Definition: lcode.c:874
Definition: llex.h:64
#define setfltvalue(obj, x)
Definition: lobject.h:314
Definition: ltm.h:26
struct expdesc::@25::@26 ind
int sizek
Definition: lobject.h:534
#define NO_JUMP
Definition: lcode.h:20
void luaK_goiffalse(FuncState *fs, expdesc *e)
Definition: lcode.c:1143
static int luaK_exp2K(FuncState *fs, expdesc *e)
Definition: lcode.c:981
int luaK_codeABCk(FuncState *fs, OpCode o, int a, int b, int c, int k)
Definition: lcode.c:405
Definition: lcode.h:28
lu_byte is_vararg
Definition: lobject.h:531
MQTTClient c
Definition: test10.c:1656
int nabslineinfo
Definition: lparser.h:153
static void finishbinexpval(FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int v2, int flip, int line, OpCode mmop, TMS event)
Definition: lcode.c:1356
static int boolF(FuncState *fs)
Definition: lcode.c:612
int luaK_getlabel(FuncState *fs)
Definition: lcode.c:231
void luaK_exp2val(FuncState *fs, expdesc *e)
Definition: lcode.c:969
struct Dyndata::@29 actvar
void luaK_fixline(FuncState *fs, int line)
Definition: lcode.c:1726
#define SETARG_k(i, v)
Definition: lopcodes.h:138
static int tonumeral(const expdesc *e, TValue *v)
Definition: lcode.c:55
#define MAXARG_sJ
Definition: lopcodes.h:89
#define MAX_INT
Definition: llimits.h:53
static int luaK_intK(FuncState *fs, lua_Integer n)
Definition: lcode.c:592
#define SETARG_A(i, v)
Definition: lopcodes.h:126
int luaV_flttointeger(lua_Number n, lua_Integer *p, F2Imod mode)
Definition: lvm.c:121
Definition: lcode.h:51
static int fitsC(lua_Integer i)
Definition: lcode.c:646
#define getinstruction(fs, e)
Definition: lcode.h:55
static void discharge2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.c:812
int sizecode
Definition: lobject.h:535
static int finaltarget(Instruction *code, int i)
Definition: lcode.c:1769
Definition: lcode.h:37
static void freeexps(FuncState *fs, expdesc *e1, expdesc *e2)
Definition: lcode.c:535
#define SETARG_sJ(i, j)
Definition: lopcodes.h:152
#define luaK_codeABC(fs, o, a, b, c)
Definition: lcode.h:48
static int isSCint(expdesc *e)
Definition: lcode.c:1229
static int fitsBx(lua_Integer i)
Definition: lcode.c:654
TMS
Definition: ltm.h:18
static void codeABRK(FuncState *fs, OpCode o, int a, int b, expdesc *ec)
Definition: lcode.c:1021
Definition: lcode.h:37
void luaK_settablesize(FuncState *fs, int pc, int ra, int asize, int hsize)
Definition: lcode.c:1732
Definition: lcode.h:31
Proto * f
Definition: lparser.h:144
#define CREATE_ABCk(o, a, b, c, k)
Definition: lopcodes.h:156
Definition: lparser.h:34
TString * strval
Definition: lparser.h:72
struct lua_State * L
Definition: llex.h:71
#define OFFSET_sBx
Definition: lopcodes.h:77
#define cast_int(i)
Definition: llimits.h:128
#define cast_sizet(i)
Definition: llimits.h:134
Table * h
Definition: llex.h:74
static int constfolding(FuncState *fs, int op, expdesc *e1, const expdesc *e2)
Definition: lcode.c:1315
static int need_value(FuncState *fs, int list)
Definition: lcode.c:884
Definition: lcode.h:51
static void savelineinfo(FuncState *fs, Proto *f, int line)
Definition: lcode.c:337
void luaK_exp2nextreg(FuncState *fs, expdesc *e)
Definition: lcode.c:928
l_uint32 Instruction
Definition: llimits.h:194
#define MAXARG_C
Definition: lopcodes.h:97
#define GETARG_sJ(i)
Definition: lopcodes.h:150
#define isOT(i)
Definition: lopcodes.h:378
int line
Definition: lobject.h:522
static int isSCnumber(expdesc *e, int *pi, int *isfloat)
Definition: lcode.c:1238
int f
Definition: lparser.h:84
static void luaK_float(FuncState *fs, int reg, lua_Number f)
Definition: lcode.c:667
Definition: lopcodes.h:32
static int codesJ(FuncState *fs, OpCode o, int sj, int k)
Definition: lcode.c:437
#define MAXARG_Bx
Definition: lopcodes.h:74
static int luaK_numberK(FuncState *fs, lua_Number r)
Definition: lcode.c:602
lua_Integer ival
Definition: lparser.h:70
TValue * k
Definition: lobject.h:542
enum MQTTReasonCodes rc
Definition: test10.c:1112
static int addk(FuncState *fs, TValue *key, TValue *v)
Definition: lcode.c:549
static int stringK(FuncState *fs, TString *s)
Definition: lcode.c:579
#define setbtvalue(obj)
Definition: lobject.h:227
void luaK_patchtohere(FuncState *fs, int list)
Definition: lcode.c:311
#define luaM_growvector(L, v, nelems, size, t, limit, e)
Definition: lmem.h:66
#define MAXARG_A
Definition: lopcodes.h:95
void luaK_setlist(FuncState *fs, int base, int nelems, int tostore)
Definition: lcode.c:1750
void luaK_posfix(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1642
int previousline
Definition: lparser.h:150
int luaY_nvarstack(FuncState *fs)
Definition: lparser.c:243
#define luaV_rawequalobj(t1, t2)
Definition: lvm.h:73
static void swapexps(expdesc *e1, expdesc *e2)
Definition: lcode.c:1417
LUA_NUMBER lua_Number
Definition: lua.h:90
Definition: lparser.h:40
#define LUA_OPMOD
Definition: lua.h:208
Definition: lparser.h:30
lu_byte numparams
Definition: lobject.h:530
void luaK_concat(FuncState *fs, int *l1, int l2)
Definition: lcode.c:180
lu_byte iwthabs
Definition: lparser.h:160
int lastline
Definition: llex.h:67
expkind k
Definition: lparser.h:68
#define CREATE_sJ(o, j, k)
Definition: lopcodes.h:169
static Instruction * previousinstruction(FuncState *fs)
Definition: lcode.c:115
#define MAXIWTHABS
Definition: lcode.c:322
#define setsvalue(L, obj, x)
Definition: lobject.h:347
#define MAXINDEXRK
Definition: lopcodes.h:175


plotjuggler
Author(s): Davide Faconti
autogenerated on Sun Dec 6 2020 03:48:09