backward.hpp
Go to the documentation of this file.
1 /*
2  * backward.hpp
3  * Copyright 2013 Google Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #ifndef H_6B9572DA_A64B_49E6_B234_051480991C89
25 #define H_6B9572DA_A64B_49E6_B234_051480991C89
26 
27 #ifndef __cplusplus
28 #error "It's not going to compile without a C++ compiler..."
29 #endif
30 
31 #if defined(BACKWARD_CXX11)
32 #elif defined(BACKWARD_CXX98)
33 #else
34 #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800)
35 #define BACKWARD_CXX11
36 #define BACKWARD_ATLEAST_CXX11
37 #define BACKWARD_ATLEAST_CXX98
38 #else
39 #define BACKWARD_CXX98
40 #define BACKWARD_ATLEAST_CXX98
41 #endif
42 #endif
43 
44 // You can define one of the following (or leave it to the auto-detection):
45 //
46 // #define BACKWARD_SYSTEM_LINUX
47 // - specialization for linux
48 //
49 // #define BACKWARD_SYSTEM_DARWIN
50 // - specialization for Mac OS X 10.5 and later.
51 //
52 // #define BACKWARD_SYSTEM_UNKNOWN
53 // - placebo implementation, does nothing.
54 //
55 #if defined(BACKWARD_SYSTEM_LINUX)
56 #elif defined(BACKWARD_SYSTEM_DARWIN)
57 #elif defined(BACKWARD_SYSTEM_UNKNOWN)
58 #elif defined(BACKWARD_SYSTEM_WINDOWS)
59 #else
60 #if defined(__linux) || defined(__linux__)
61 #define BACKWARD_SYSTEM_LINUX
62 #elif defined(__APPLE__)
63 #define BACKWARD_SYSTEM_DARWIN
64 #elif defined(_WIN32)
65 #define BACKWARD_SYSTEM_WINDOWS
66 #else
67 #define BACKWARD_SYSTEM_UNKNOWN
68 #endif
69 #endif
70 
71 #define NOINLINE __attribute__((noinline))
72 
73 #include <algorithm>
74 #include <cctype>
75 #include <cstdio>
76 #include <cstdlib>
77 #include <cstring>
78 #include <fstream>
79 #include <iomanip>
80 #include <iostream>
81 #include <limits>
82 #include <new>
83 #include <sstream>
84 #include <streambuf>
85 #include <string>
86 #include <vector>
87 
88 #if defined(BACKWARD_SYSTEM_LINUX)
89 
90 // On linux, backtrace can back-trace or "walk" the stack using the following
91 // libraries:
92 //
93 // #define BACKWARD_HAS_UNWIND 1
94 // - unwind comes from libgcc, but I saw an equivalent inside clang itself.
95 // - with unwind, the stacktrace is as accurate as it can possibly be, since
96 // this is used by the C++ runtine in gcc/clang for stack unwinding on
97 // exception.
98 // - normally libgcc is already linked to your program by default.
99 //
100 // #define BACKWARD_HAS_BACKTRACE == 1
101 // - backtrace seems to be a little bit more portable than libunwind, but on
102 // linux, it uses unwind anyway, but abstract away a tiny information that is
103 // sadly really important in order to get perfectly accurate stack traces.
104 // - backtrace is part of the (e)glib library.
105 //
106 // The default is:
107 // #define BACKWARD_HAS_UNWIND == 1
108 //
109 // Note that only one of the define should be set to 1 at a time.
110 //
111 #if BACKWARD_HAS_UNWIND == 1
112 #elif BACKWARD_HAS_BACKTRACE == 1
113 #else
114 #undef BACKWARD_HAS_UNWIND
115 #define BACKWARD_HAS_UNWIND 1
116 #undef BACKWARD_HAS_BACKTRACE
117 #define BACKWARD_HAS_BACKTRACE 0
118 #endif
119 
120 // On linux, backward can extract detailed information about a stack trace
121 // using one of the following libraries:
122 //
123 // #define BACKWARD_HAS_DW 1
124 // - libdw gives you the most juicy details out of your stack traces:
125 // - object filename
126 // - function name
127 // - source filename
128 // - line and column numbers
129 // - source code snippet (assuming the file is accessible)
130 // - variables name and values (if not optimized out)
131 // - You need to link with the lib "dw":
132 // - apt-get install libdw-dev
133 // - g++/clang++ -ldw ...
134 //
135 // #define BACKWARD_HAS_BFD 1
136 // - With libbfd, you get a fair amount of details:
137 // - object filename
138 // - function name
139 // - source filename
140 // - line numbers
141 // - source code snippet (assuming the file is accessible)
142 // - You need to link with the lib "bfd":
143 // - apt-get install binutils-dev
144 // - g++/clang++ -lbfd ...
145 //
146 // #define BACKWARD_HAS_DWARF 1
147 // - libdwarf gives you the most juicy details out of your stack traces:
148 // - object filename
149 // - function name
150 // - source filename
151 // - line and column numbers
152 // - source code snippet (assuming the file is accessible)
153 // - variables name and values (if not optimized out)
154 // - You need to link with the lib "dwarf":
155 // - apt-get install libdwarf-dev
156 // - g++/clang++ -ldwarf ...
157 //
158 // #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
159 // - backtrace provides minimal details for a stack trace:
160 // - object filename
161 // - function name
162 // - backtrace is part of the (e)glib library.
163 //
164 // The default is:
165 // #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
166 //
167 // Note that only one of the define should be set to 1 at a time.
168 //
169 #if BACKWARD_HAS_DW == 1
170 #elif BACKWARD_HAS_BFD == 1
171 #elif BACKWARD_HAS_DWARF == 1
172 #elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
173 #else
174 #undef BACKWARD_HAS_DW
175 #define BACKWARD_HAS_DW 0
176 #undef BACKWARD_HAS_BFD
177 #define BACKWARD_HAS_BFD 0
178 #undef BACKWARD_HAS_DWARF
179 #define BACKWARD_HAS_DWARF 0
180 #undef BACKWARD_HAS_BACKTRACE_SYMBOL
181 #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
182 #endif
183 
184 #include <cxxabi.h>
185 #include <fcntl.h>
186 #ifdef __ANDROID__
187 // Old Android API levels define _Unwind_Ptr in both link.h and
188 // unwind.h Rename the one in link.h as we are not going to be using
189 // it
190 #define _Unwind_Ptr _Unwind_Ptr_Custom
191 #include <link.h>
192 #undef _Unwind_Ptr
193 #else
194 #include <link.h>
195 #endif
196 #include <signal.h>
197 #include <sys/stat.h>
198 #include <syscall.h>
199 #include <unistd.h>
200 
201 #if BACKWARD_HAS_BFD == 1
202 // NOTE: defining PACKAGE{,_VERSION} is required before including
203 // bfd.h on some platforms, see also:
204 // https://sourceware.org/bugzilla/show_bug.cgi?id=14243
205 #ifndef PACKAGE
206 #define PACKAGE
207 #endif
208 #ifndef PACKAGE_VERSION
209 #define PACKAGE_VERSION
210 #endif
211 #include <bfd.h>
212 #ifndef _GNU_SOURCE
213 #define _GNU_SOURCE
214 #include <dlfcn.h>
215 #undef _GNU_SOURCE
216 #else
217 #include <dlfcn.h>
218 #endif
219 #endif
220 
221 #if BACKWARD_HAS_DW == 1
222 #include <dwarf.h>
223 #include <elfutils/libdw.h>
224 #include <elfutils/libdwfl.h>
225 #endif
226 
227 #if BACKWARD_HAS_DWARF == 1
228 #include <algorithm>
229 #include <dwarf.h>
230 #include <libdwarf.h>
231 #include <libelf.h>
232 #include <map>
233 #ifndef _GNU_SOURCE
234 #define _GNU_SOURCE
235 #include <dlfcn.h>
236 #undef _GNU_SOURCE
237 #else
238 #include <dlfcn.h>
239 #endif
240 #endif
241 
242 #if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
243 // then we shall rely on backtrace
244 #include <execinfo.h>
245 #endif
246 
247 #endif // defined(BACKWARD_SYSTEM_LINUX)
248 
249 #if defined(BACKWARD_SYSTEM_DARWIN)
250 // On Darwin, backtrace can back-trace or "walk" the stack using the following
251 // libraries:
252 //
253 // #define BACKWARD_HAS_UNWIND 1
254 // - unwind comes from libgcc, but I saw an equivalent inside clang itself.
255 // - with unwind, the stacktrace is as accurate as it can possibly be, since
256 // this is used by the C++ runtine in gcc/clang for stack unwinding on
257 // exception.
258 // - normally libgcc is already linked to your program by default.
259 //
260 // #define BACKWARD_HAS_BACKTRACE == 1
261 // - backtrace is available by default, though it does not produce as much
262 // information as another library might.
263 //
264 // The default is:
265 // #define BACKWARD_HAS_UNWIND == 1
266 //
267 // Note that only one of the define should be set to 1 at a time.
268 //
269 #if BACKWARD_HAS_UNWIND == 1
270 #elif BACKWARD_HAS_BACKTRACE == 1
271 #else
272 #undef BACKWARD_HAS_UNWIND
273 #define BACKWARD_HAS_UNWIND 1
274 #undef BACKWARD_HAS_BACKTRACE
275 #define BACKWARD_HAS_BACKTRACE 0
276 #endif
277 
278 // On Darwin, backward can extract detailed information about a stack trace
279 // using one of the following libraries:
280 //
281 // #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
282 // - backtrace provides minimal details for a stack trace:
283 // - object filename
284 // - function name
285 //
286 // The default is:
287 // #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
288 //
289 #if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
290 #else
291 #undef BACKWARD_HAS_BACKTRACE_SYMBOL
292 #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
293 #endif
294 
295 #include <cxxabi.h>
296 #include <fcntl.h>
297 #include <pthread.h>
298 #include <signal.h>
299 #include <sys/stat.h>
300 #include <unistd.h>
301 
302 #if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
303 #include <execinfo.h>
304 #endif
305 #endif // defined(BACKWARD_SYSTEM_DARWIN)
306 
307 #if defined(BACKWARD_SYSTEM_WINDOWS)
308 
309 #include <condition_variable>
310 #include <mutex>
311 #include <thread>
312 
313 #include <BaseTsd.h>
314 typedef SSIZE_T ssize_t;
315 
316 #define NOMINMAX
317 #include <Windows.h>
318 #include <winnt.h>
319 
320 #include <Psapi.h>
321 #include <signal.h>
322 
323 #ifndef __clang__
324 #undef NOINLINE
325 #define NOINLINE __declspec(noinline)
326 #endif
327 
328 #pragma comment(lib, "psapi.lib")
329 #pragma comment(lib, "dbghelp.lib")
330 
331 // Comment / packing is from stackoverflow:
332 // https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
333 // Some versions of imagehlp.dll lack the proper packing directives themselves
334 // so we need to do it.
335 #pragma pack(push, before_imagehlp, 8)
336 #include <imagehlp.h>
337 #pragma pack(pop, before_imagehlp)
338 
339 // TODO maybe these should be undefined somewhere else?
340 #undef BACKWARD_HAS_UNWIND
341 #undef BACKWARD_HAS_BACKTRACE
342 #if BACKWARD_HAS_PDB_SYMBOL == 1
343 #else
344 #undef BACKWARD_HAS_PDB_SYMBOL
345 #define BACKWARD_HAS_PDB_SYMBOL 1
346 #endif
347 
348 #endif
349 
350 #if BACKWARD_HAS_UNWIND == 1
351 
352 #include <unwind.h>
353 // while gcc's unwind.h defines something like that:
354 // extern _Unwind_Ptr _Unwind_GetIP (struct _Unwind_Context *);
355 // extern _Unwind_Ptr _Unwind_GetIPInfo (struct _Unwind_Context *, int *);
356 //
357 // clang's unwind.h defines something like this:
358 // uintptr_t _Unwind_GetIP(struct _Unwind_Context* __context);
359 //
360 // Even if the _Unwind_GetIPInfo can be linked to, it is not declared, worse we
361 // cannot just redeclare it because clang's unwind.h doesn't define _Unwind_Ptr
362 // anyway.
363 //
364 // Luckily we can play on the fact that the guard macros have a different name:
365 #ifdef __CLANG_UNWIND_H
366 // In fact, this function still comes from libgcc (on my different linux boxes,
367 // clang links against libgcc).
368 #include <inttypes.h>
369 extern "C" uintptr_t _Unwind_GetIPInfo(_Unwind_Context *, int *);
370 #endif
371 
372 #endif // BACKWARD_HAS_UNWIND == 1
373 
374 #ifdef BACKWARD_ATLEAST_CXX11
375 #include <unordered_map>
376 #include <utility> // for std::swap
377 namespace backward {
378 namespace details {
379 template <typename K, typename V> struct hashtable {
380  typedef std::unordered_map<K, V> type;
381 };
382 using std::move;
383 } // namespace details
384 } // namespace backward
385 #else // NOT BACKWARD_ATLEAST_CXX11
386 #define nullptr NULL
387 #define override
388 #include <map>
389 namespace backward {
390 namespace details {
391 template <typename K, typename V> struct hashtable {
392  typedef std::map<K, V> type;
393 };
394 template <typename T> const T &move(const T &v) { return v; }
395 template <typename T> T &move(T &v) { return v; }
396 } // namespace details
397 } // namespace backward
398 #endif // BACKWARD_ATLEAST_CXX11
399 
400 namespace backward {
401 namespace details {
402 #if defined(BACKWARD_SYSTEM_WINDOWS)
403 const char kBackwardPathDelimiter[] = ";";
404 #else
405 const char kBackwardPathDelimiter[] = ":";
406 #endif
407 } // namespace details
408 } // namespace backward
409 
410 namespace backward {
411 
412 namespace system_tag {
413 struct linux_tag; // seems that I cannot call that "linux" because the name
414 // is already defined... so I am adding _tag everywhere.
415 struct darwin_tag;
416 struct windows_tag;
417 struct unknown_tag;
418 
419 #if defined(BACKWARD_SYSTEM_LINUX)
420 typedef linux_tag current_tag;
421 #elif defined(BACKWARD_SYSTEM_DARWIN)
422 typedef darwin_tag current_tag;
423 #elif defined(BACKWARD_SYSTEM_WINDOWS)
424 typedef windows_tag current_tag;
425 #elif defined(BACKWARD_SYSTEM_UNKNOWN)
426 typedef unknown_tag current_tag;
427 #else
428 #error "May I please get my system defines?"
429 #endif
430 } // namespace system_tag
431 
432 namespace trace_resolver_tag {
433 #if defined(BACKWARD_SYSTEM_LINUX)
434 struct libdw;
435 struct libbfd;
436 struct libdwarf;
437 struct backtrace_symbol;
438 
439 #if BACKWARD_HAS_DW == 1
440 typedef libdw current;
441 #elif BACKWARD_HAS_BFD == 1
442 typedef libbfd current;
443 #elif BACKWARD_HAS_DWARF == 1
444 typedef libdwarf current;
445 #elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
446 typedef backtrace_symbol current;
447 #else
448 #error "You shall not pass, until you know what you want."
449 #endif
450 #elif defined(BACKWARD_SYSTEM_DARWIN)
451 struct backtrace_symbol;
452 
453 #if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
454 typedef backtrace_symbol current;
455 #else
456 #error "You shall not pass, until you know what you want."
457 #endif
458 #elif defined(BACKWARD_SYSTEM_WINDOWS)
459 struct pdb_symbol;
460 #if BACKWARD_HAS_PDB_SYMBOL == 1
461 typedef pdb_symbol current;
462 #else
463 #error "You shall not pass, until you know what you want."
464 #endif
465 #endif
466 } // namespace trace_resolver_tag
467 
468 namespace details {
469 
470 template <typename T> struct rm_ptr { typedef T type; };
471 
472 template <typename T> struct rm_ptr<T *> { typedef T type; };
473 
474 template <typename T> struct rm_ptr<const T *> { typedef const T type; };
475 
476 template <typename R, typename T, R (*F)(T)> struct deleter {
477  template <typename U> void operator()(U &ptr) const { (*F)(ptr); }
478 };
479 
480 template <typename T> struct default_delete {
481  void operator()(T &ptr) const { delete ptr; }
482 };
483 
484 template <typename T, typename Deleter = deleter<void, void *, &::free> >
485 class handle {
486  struct dummy;
487  T _val;
488  bool _empty;
489 
490 #ifdef BACKWARD_ATLEAST_CXX11
491  handle(const handle &) = delete;
492  handle &operator=(const handle &) = delete;
493 #endif
494 
495 public:
497  if (!_empty) {
498  Deleter()(_val);
499  }
500  }
501 
502  explicit handle() : _val(), _empty(true) {}
503  explicit handle(T val) : _val(val), _empty(false) {
504  if (!_val)
505  _empty = true;
506  }
507 
508 #ifdef BACKWARD_ATLEAST_CXX11
509  handle(handle &&from) : _empty(true) { swap(from); }
510  handle &operator=(handle &&from) {
511  swap(from);
512  return *this;
513  }
514 #else
515  explicit handle(const handle &from) : _empty(true) {
516  // some sort of poor man's move semantic.
517  swap(const_cast<handle &>(from));
518  }
519  handle &operator=(const handle &from) {
520  // some sort of poor man's move semantic.
521  swap(const_cast<handle &>(from));
522  return *this;
523  }
524 #endif
525 
526  void reset(T new_val) {
527  handle tmp(new_val);
528  swap(tmp);
529  }
530 
531  void update(T new_val) {
532  _val = new_val;
533  _empty = static_cast<bool>(new_val);
534  }
535 
536  operator const dummy *() const {
537  if (_empty) {
538  return nullptr;
539  }
540  return reinterpret_cast<const dummy *>(_val);
541  }
542  T get() { return _val; }
543  T release() {
544  _empty = true;
545  return _val;
546  }
547  void swap(handle &b) {
548  using std::swap;
549  swap(b._val, _val); // can throw, we are safe here.
550  swap(b._empty, _empty); // should not throw: if you cannot swap two
551  // bools without throwing... It's a lost cause anyway!
552  }
553 
554  T &operator->() { return _val; }
555  const T &operator->() const { return _val; }
556 
557  typedef typename rm_ptr<T>::type &ref_t;
558  typedef const typename rm_ptr<T>::type &const_ref_t;
559  ref_t operator*() { return *_val; }
560  const_ref_t operator*() const { return *_val; }
561  ref_t operator[](size_t idx) { return _val[idx]; }
562 
563  // Watch out, we've got a badass over here
564  T *operator&() {
565  _empty = false;
566  return &_val;
567  }
568 };
569 
570 // Default demangler implementation (do nothing).
571 template <typename TAG> struct demangler_impl {
572  static std::string demangle(const char *funcname) { return funcname; }
573 };
574 
575 #if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
576 
577 template <> struct demangler_impl<system_tag::current_tag> {
578  demangler_impl() : _demangle_buffer_length(0) {}
579 
580  std::string demangle(const char *funcname) {
581  using namespace details;
582  char *result = abi::__cxa_demangle(funcname, _demangle_buffer.get(),
583  &_demangle_buffer_length, nullptr);
584  if (result) {
585  _demangle_buffer.update(result);
586  return result;
587  }
588  return funcname;
589  }
590 
591 private:
592  details::handle<char *> _demangle_buffer;
593  size_t _demangle_buffer_length;
594 };
595 
596 #endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
597 
598 struct demangler : public demangler_impl<system_tag::current_tag> {};
599 
600 // Split a string on the platform's PATH delimiter. Example: if delimiter
601 // is ":" then:
602 // "" --> []
603 // ":" --> ["",""]
604 // "::" --> ["","",""]
605 // "/a/b/c" --> ["/a/b/c"]
606 // "/a/b/c:/d/e/f" --> ["/a/b/c","/d/e/f"]
607 // etc.
608 inline std::vector<std::string> split_source_prefixes(const std::string &s) {
609  std::vector<std::string> out;
610  size_t last = 0;
611  size_t next = 0;
612  size_t delimiter_size = sizeof(kBackwardPathDelimiter)-1;
613  while ((next = s.find(kBackwardPathDelimiter, last)) != std::string::npos) {
614  out.push_back(s.substr(last, next-last));
615  last = next + delimiter_size;
616  }
617  if (last <= s.length()) {
618  out.push_back(s.substr(last));
619  }
620  return out;
621 }
622 
623 } // namespace details
624 
625 /*************** A TRACE ***************/
626 
627 struct Trace {
628  void *addr;
629  size_t idx;
630 
631  Trace() : addr(nullptr), idx(0) {}
632 
633  explicit Trace(void *_addr, size_t _idx) : addr(_addr), idx(_idx) {}
634 };
635 
636 struct ResolvedTrace : public Trace {
637 
638  struct SourceLoc {
639  std::string function;
640  std::string filename;
641  unsigned line;
642  unsigned col;
643 
644  SourceLoc() : line(0), col(0) {}
645 
646  bool operator==(const SourceLoc &b) const {
647  return function == b.function && filename == b.filename &&
648  line == b.line && col == b.col;
649  }
650 
651  bool operator!=(const SourceLoc &b) const { return !(*this == b); }
652  };
653 
654  // In which binary object this trace is located.
655  std::string object_filename;
656 
657  // The function in the object that contain the trace. This is not the same
658  // as source.function which can be an function inlined in object_function.
659  std::string object_function;
660 
661  // The source location of this trace. It is possible for filename to be
662  // empty and for line/col to be invalid (value 0) if this information
663  // couldn't be deduced, for example if there is no debug information in the
664  // binary object.
666 
667  // An optionals list of "inliners". All the successive sources location
668  // from where the source location of the trace (the attribute right above)
669  // is inlined. It is especially useful when you compiled with optimization.
670  typedef std::vector<SourceLoc> source_locs_t;
671  source_locs_t inliners;
672 
674  ResolvedTrace(const Trace &mini_trace) : Trace(mini_trace) {}
675 };
676 
677 /*************** STACK TRACE ***************/
678 
679 // default implemention.
680 template <typename TAG> class StackTraceImpl {
681 public:
682  size_t size() const { return 0; }
683  Trace operator[](size_t) const { return Trace(); }
684  size_t load_here(size_t = 0) { return 0; }
685  size_t load_from(void *, size_t = 0) { return 0; }
686  size_t thread_id() const { return 0; }
687  void skip_n_firsts(size_t) {}
688 };
689 
691 public:
692  StackTraceImplBase() : _thread_id(0), _skip(0) {}
693 
694  size_t thread_id() const { return _thread_id; }
695 
696  void skip_n_firsts(size_t n) { _skip = n; }
697 
698 protected:
700 #ifdef BACKWARD_SYSTEM_LINUX
701 #ifndef __ANDROID__
702  _thread_id = static_cast<size_t>(syscall(SYS_gettid));
703 #else
704  _thread_id = static_cast<size_t>(gettid());
705 #endif
706  if (_thread_id == static_cast<size_t>(getpid())) {
707  // If the thread is the main one, let's hide that.
708  // I like to keep little secret sometimes.
709  _thread_id = 0;
710  }
711 #elif defined(BACKWARD_SYSTEM_DARWIN)
712  _thread_id = reinterpret_cast<size_t>(pthread_self());
713  if (pthread_main_np() == 1) {
714  // If the thread is the main one, let's hide that.
715  _thread_id = 0;
716  }
717 #endif
718  }
719 
720  size_t skip_n_firsts() const { return _skip; }
721 
722 private:
723  size_t _thread_id;
724  size_t _skip;
725 };
726 
728 public:
729  size_t size() const {
730  return _stacktrace.size() ? _stacktrace.size() - skip_n_firsts() : 0;
731  }
732  Trace operator[](size_t idx) const {
733  if (idx >= size()) {
734  return Trace();
735  }
736  return Trace(_stacktrace[idx + skip_n_firsts()], idx);
737  }
738  void *const *begin() const {
739  if (size()) {
740  return &_stacktrace[skip_n_firsts()];
741  }
742  return nullptr;
743  }
744 
745 protected:
746  std::vector<void *> _stacktrace;
747 };
748 
749 #if BACKWARD_HAS_UNWIND == 1
750 
751 namespace details {
752 
753 template <typename F> class Unwinder {
754 public:
755  size_t operator()(F &f, size_t depth) {
756  _f = &f;
757  _index = -1;
758  _depth = depth;
759  _Unwind_Backtrace(&this->backtrace_trampoline, this);
760  return static_cast<size_t>(_index);
761  }
762 
763 private:
764  F *_f;
765  ssize_t _index;
766  size_t _depth;
767 
768  static _Unwind_Reason_Code backtrace_trampoline(_Unwind_Context *ctx,
769  void *self) {
770  return (static_cast<Unwinder *>(self))->backtrace(ctx);
771  }
772 
773  _Unwind_Reason_Code backtrace(_Unwind_Context *ctx) {
774  if (_index >= 0 && static_cast<size_t>(_index) >= _depth)
775  return _URC_END_OF_STACK;
776 
777  int ip_before_instruction = 0;
778  uintptr_t ip = _Unwind_GetIPInfo(ctx, &ip_before_instruction);
779 
780  if (!ip_before_instruction) {
781  // calculating 0-1 for unsigned, looks like a possible bug to sanitiziers,
782  // so let's do it explicitly:
783  if (ip == 0) {
784  ip = std::numeric_limits<uintptr_t>::max(); // set it to 0xffff... (as
785  // from casting 0-1)
786  } else {
787  ip -= 1; // else just normally decrement it (no overflow/underflow will
788  // happen)
789  }
790  }
791 
792  if (_index >= 0) { // ignore first frame.
793  (*_f)(static_cast<size_t>(_index), reinterpret_cast<void *>(ip));
794  }
795  _index += 1;
796  return _URC_NO_REASON;
797  }
798 };
799 
800 template <typename F> size_t unwind(F f, size_t depth) {
801  Unwinder<F> unwinder;
802  return unwinder(f, depth);
803 }
804 
805 } // namespace details
806 
807 template <>
808 class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
809 public:
810  NOINLINE
811  size_t load_here(size_t depth = 32) {
812  load_thread_info();
813  if (depth == 0) {
814  return 0;
815  }
816  _stacktrace.resize(depth);
817  size_t trace_cnt = details::unwind(callback(*this), depth);
818  _stacktrace.resize(trace_cnt);
819  skip_n_firsts(0);
820  return size();
821  }
822  size_t load_from(void *addr, size_t depth = 32) {
823  load_here(depth + 8);
824 
825  for (size_t i = 0; i < _stacktrace.size(); ++i) {
826  if (_stacktrace[i] == addr) {
827  skip_n_firsts(i);
828  break;
829  }
830  }
831 
832  _stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
833  return size();
834  }
835 
836 private:
837  struct callback {
838  StackTraceImpl &self;
839  callback(StackTraceImpl &_self) : self(_self) {}
840 
841  void operator()(size_t idx, void *addr) { self._stacktrace[idx] = addr; }
842  };
843 };
844 
845 #elif defined(BACKWARD_HAS_BACKTRACE)
846 
847 template <>
848 class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
849 public:
850  NOINLINE
851  size_t load_here(size_t depth = 32) {
852  load_thread_info();
853  if (depth == 0) {
854  return 0;
855  }
856  _stacktrace.resize(depth + 1);
857  size_t trace_cnt = backtrace(&_stacktrace[0], _stacktrace.size());
858  _stacktrace.resize(trace_cnt);
859  skip_n_firsts(1);
860  return size();
861  }
862 
863  size_t load_from(void *addr, size_t depth = 32) {
864  load_here(depth + 8);
865 
866  for (size_t i = 0; i < _stacktrace.size(); ++i) {
867  if (_stacktrace[i] == addr) {
868  skip_n_firsts(i);
869  _stacktrace[i] = (void *)((uintptr_t)_stacktrace[i] + 1);
870  break;
871  }
872  }
873 
874  _stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
875  return size();
876  }
877 };
878 
879 #elif defined(BACKWARD_SYSTEM_WINDOWS)
880 
881 template <>
882 class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
883 public:
884  // We have to load the machine type from the image info
885  // So we first initialize the resolver, and it tells us this info
886  void set_machine_type(DWORD machine_type) { machine_type_ = machine_type; }
887  void set_context(CONTEXT *ctx) { ctx_ = ctx; }
888  void set_thread_handle(HANDLE handle) { thd_ = handle; }
889 
890  NOINLINE
891  size_t load_here(size_t depth = 32) {
892 
893  CONTEXT localCtx; // used when no context is provided
894 
895  if (depth == 0) {
896  return 0;
897  }
898 
899  if (!ctx_) {
900  ctx_ = &localCtx;
901  RtlCaptureContext(ctx_);
902  }
903 
904  if (!thd_) {
905  thd_ = GetCurrentThread();
906  }
907 
908  HANDLE process = GetCurrentProcess();
909 
910  STACKFRAME64 s;
911  memset(&s, 0, sizeof(STACKFRAME64));
912 
913  // TODO: 32 bit context capture
914  s.AddrStack.Mode = AddrModeFlat;
915  s.AddrFrame.Mode = AddrModeFlat;
916  s.AddrPC.Mode = AddrModeFlat;
917 #ifdef _M_X64
918  s.AddrPC.Offset = ctx_->Rip;
919  s.AddrStack.Offset = ctx_->Rsp;
920  s.AddrFrame.Offset = ctx_->Rbp;
921 #else
922  s.AddrPC.Offset = ctx_->Eip;
923  s.AddrStack.Offset = ctx_->Esp;
924  s.AddrFrame.Offset = ctx_->Ebp;
925 #endif
926 
927  if (!machine_type_) {
928 #ifdef _M_X64
929  machine_type_ = IMAGE_FILE_MACHINE_AMD64;
930 #else
931  machine_type_ = IMAGE_FILE_MACHINE_I386;
932 #endif
933  }
934 
935  for (;;) {
936  // NOTE: this only works if PDBs are already loaded!
937  SetLastError(0);
938  if (!StackWalk64(machine_type_, process, thd_, &s, ctx_, NULL,
939  SymFunctionTableAccess64, SymGetModuleBase64, NULL))
940  break;
941 
942  if (s.AddrReturn.Offset == 0)
943  break;
944 
945  _stacktrace.push_back(reinterpret_cast<void *>(s.AddrPC.Offset));
946 
947  if (size() >= depth)
948  break;
949  }
950 
951  return size();
952  }
953 
954  size_t load_from(void *addr, size_t depth = 32) {
955  load_here(depth + 8);
956 
957  for (size_t i = 0; i < _stacktrace.size(); ++i) {
958  if (_stacktrace[i] == addr) {
959  skip_n_firsts(i);
960  break;
961  }
962  }
963 
964  _stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
965  return size();
966  }
967 
968 private:
969  DWORD machine_type_ = 0;
970  HANDLE thd_ = 0;
971  CONTEXT *ctx_ = nullptr;
972 };
973 
974 #endif
975 
976 class StackTrace : public StackTraceImpl<system_tag::current_tag> {};
977 
978 /*************** TRACE RESOLVER ***************/
979 
980 template <typename TAG> class TraceResolverImpl;
981 
982 #ifdef BACKWARD_SYSTEM_UNKNOWN
983 
984 template <> class TraceResolverImpl<system_tag::unknown_tag> {
985 public:
986  template <class ST> void load_stacktrace(ST &) {}
988 };
989 
990 #endif
991 
993 protected:
994  std::string demangle(const char *funcname) {
995  return _demangler.demangle(funcname);
996  }
997 
998 private:
1000 };
1001 
1002 #ifdef BACKWARD_SYSTEM_LINUX
1003 
1004 class TraceResolverLinuxBase
1005  : public TraceResolverImplBase {
1006 public:
1007  TraceResolverLinuxBase()
1008  : argv0_(get_argv0()), exec_path_(read_symlink("/proc/self/exe")) {
1009  }
1010  std::string resolve_exec_path(Dl_info &symbol_info) const {
1011  // mutates symbol_info.dli_fname to be filename to open and returns filename to display
1012  if(symbol_info.dli_fname == argv0_) {
1013  // dladdr returns argv[0] in dli_fname for symbols contained in
1014  // the main executable, which is not a valid path if the
1015  // executable was found by a search of the PATH environment
1016  // variable; In that case, we actually open /proc/self/exe, which
1017  // is always the actual executable (even if it was deleted/replaced!)
1018  // but display the path that /proc/self/exe links to.
1019  symbol_info.dli_fname = "/proc/self/exe";
1020  return exec_path_;
1021  } else {
1022  return symbol_info.dli_fname;
1023  }
1024  }
1025 private:
1026  std::string argv0_;
1027  std::string exec_path_;
1028 
1029  static std::string get_argv0() {
1030  std::string argv0;
1031  std::ifstream ifs("/proc/self/cmdline");
1032  std::getline(ifs, argv0, '\0');
1033  return argv0;
1034  }
1035 
1036  static std::string read_symlink(std::string const &symlink_path) {
1037  std::string path;
1038  path.resize(100);
1039 
1040  while (true) {
1041  ssize_t len =
1042  ::readlink(symlink_path.c_str(), &*path.begin(), path.size());
1043  if (len < 0) {
1044  return "";
1045  }
1046  if (static_cast<size_t>(len) == path.size()) {
1047  path.resize(path.size() * 2);
1048  } else {
1049  path.resize(static_cast<std::string::size_type>(len));
1050  break;
1051  }
1052  }
1053 
1054  return path;
1055  }
1056 };
1057 
1058 template <typename STACKTRACE_TAG> class TraceResolverLinuxImpl;
1059 
1060 #if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
1061 
1062 template <>
1063 class TraceResolverLinuxImpl<trace_resolver_tag::backtrace_symbol>
1064  : public TraceResolverLinuxBase {
1065 public:
1066  template <class ST> void load_stacktrace(ST &st) {
1067  using namespace details;
1068  if (st.size() == 0) {
1069  return;
1070  }
1071  _symbols.reset(backtrace_symbols(st.begin(), (int)st.size()));
1072  }
1073 
1075  char *filename = _symbols[trace.idx];
1076  char *funcname = filename;
1077  while (*funcname && *funcname != '(') {
1078  funcname += 1;
1079  }
1080  trace.object_filename.assign(filename,
1081  funcname); // ok even if funcname is the ending
1082  // \0 (then we assign entire string)
1083 
1084  if (*funcname) { // if it's not end of string (e.g. from last frame ip==0)
1085  funcname += 1;
1086  char *funcname_end = funcname;
1087  while (*funcname_end && *funcname_end != ')' && *funcname_end != '+') {
1088  funcname_end += 1;
1089  }
1090  *funcname_end = '\0';
1091  trace.object_function = this->demangle(funcname);
1092  trace.source.function = trace.object_function; // we cannot do better.
1093  }
1094  return trace;
1095  }
1096 
1097 private:
1098  details::handle<char **> _symbols;
1099 };
1100 
1101 #endif // BACKWARD_HAS_BACKTRACE_SYMBOL == 1
1102 
1103 #if BACKWARD_HAS_BFD == 1
1104 
1105 template <>
1106 class TraceResolverLinuxImpl<trace_resolver_tag::libbfd>
1107  : public TraceResolverLinuxBase {
1108 public:
1109  TraceResolverLinuxImpl() : _bfd_loaded(false) {}
1110 
1111  template <class ST> void load_stacktrace(ST &) {}
1112 
1114  Dl_info symbol_info;
1115 
1116  // trace.addr is a virtual address in memory pointing to some code.
1117  // Let's try to find from which loaded object it comes from.
1118  // The loaded object can be yourself btw.
1119  if (!dladdr(trace.addr, &symbol_info)) {
1120  return trace; // dat broken trace...
1121  }
1122 
1123  // Now we get in symbol_info:
1124  // .dli_fname:
1125  // pathname of the shared object that contains the address.
1126  // .dli_fbase:
1127  // where the object is loaded in memory.
1128  // .dli_sname:
1129  // the name of the nearest symbol to trace.addr, we expect a
1130  // function name.
1131  // .dli_saddr:
1132  // the exact address corresponding to .dli_sname.
1133 
1134  if (symbol_info.dli_sname) {
1135  trace.object_function = demangle(symbol_info.dli_sname);
1136  }
1137 
1138  if (!symbol_info.dli_fname) {
1139  return trace;
1140  }
1141 
1142  trace.object_filename = resolve_exec_path(symbol_info);
1143  bfd_fileobject &fobj = load_object_with_bfd(symbol_info.dli_fname);
1144  if (!fobj.handle) {
1145  return trace; // sad, we couldn't load the object :(
1146  }
1147 
1148  find_sym_result *details_selected; // to be filled.
1149 
1150  // trace.addr is the next instruction to be executed after returning
1151  // from the nested stack frame. In C++ this usually relate to the next
1152  // statement right after the function call that leaded to a new stack
1153  // frame. This is not usually what you want to see when printing out a
1154  // stacktrace...
1155  find_sym_result details_call_site =
1156  find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
1157  details_selected = &details_call_site;
1158 
1159 #if BACKWARD_HAS_UNWIND == 0
1160  // ...this is why we also try to resolve the symbol that is right
1161  // before the return address. If we are lucky enough, we will get the
1162  // line of the function that was called. But if the code is optimized,
1163  // we might get something absolutely not related since the compiler
1164  // can reschedule the return address with inline functions and
1165  // tail-call optimisation (among other things that I don't even know
1166  // or cannot even dream about with my tiny limited brain).
1167  find_sym_result details_adjusted_call_site = find_symbol_details(
1168  fobj, (void *)(uintptr_t(trace.addr) - 1), symbol_info.dli_fbase);
1169 
1170  // In debug mode, we should always get the right thing(TM).
1171  if (details_call_site.found && details_adjusted_call_site.found) {
1172  // Ok, we assume that details_adjusted_call_site is a better estimation.
1173  details_selected = &details_adjusted_call_site;
1174  trace.addr = (void *)(uintptr_t(trace.addr) - 1);
1175  }
1176 
1177  if (details_selected == &details_call_site && details_call_site.found) {
1178  // we have to re-resolve the symbol in order to reset some
1179  // internal state in BFD... so we can call backtrace_inliners
1180  // thereafter...
1181  details_call_site =
1182  find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
1183  }
1184 #endif // BACKWARD_HAS_UNWIND
1185 
1186  if (details_selected->found) {
1187  if (details_selected->filename) {
1188  trace.source.filename = details_selected->filename;
1189  }
1190  trace.source.line = details_selected->line;
1191 
1192  if (details_selected->funcname) {
1193  // this time we get the name of the function where the code is
1194  // located, instead of the function were the address is
1195  // located. In short, if the code was inlined, we get the
1196  // function correspoding to the code. Else we already got in
1197  // trace.function.
1198  trace.source.function = demangle(details_selected->funcname);
1199 
1200  if (!symbol_info.dli_sname) {
1201  // for the case dladdr failed to find the symbol name of
1202  // the function, we might as well try to put something
1203  // here.
1204  trace.object_function = trace.source.function;
1205  }
1206  }
1207 
1208  // Maybe the source of the trace got inlined inside the function
1209  // (trace.source.function). Let's see if we can get all the inlined
1210  // calls along the way up to the initial call site.
1211  trace.inliners = backtrace_inliners(fobj, *details_selected);
1212 
1213 #if 0
1214  if (trace.inliners.size() == 0) {
1215  // Maybe the trace was not inlined... or maybe it was and we
1216  // are lacking the debug information. Let's try to make the
1217  // world better and see if we can get the line number of the
1218  // function (trace.source.function) now.
1219  //
1220  // We will get the location of where the function start (to be
1221  // exact: the first instruction that really start the
1222  // function), not where the name of the function is defined.
1223  // This can be quite far away from the name of the function
1224  // btw.
1225  //
1226  // If the source of the function is the same as the source of
1227  // the trace, we cannot say if the trace was really inlined or
1228  // not. However, if the filename of the source is different
1229  // between the function and the trace... we can declare it as
1230  // an inliner. This is not 100% accurate, but better than
1231  // nothing.
1232 
1233  if (symbol_info.dli_saddr) {
1234  find_sym_result details = find_symbol_details(fobj,
1235  symbol_info.dli_saddr,
1236  symbol_info.dli_fbase);
1237 
1238  if (details.found) {
1239  ResolvedTrace::SourceLoc diy_inliner;
1240  diy_inliner.line = details.line;
1241  if (details.filename) {
1242  diy_inliner.filename = details.filename;
1243  }
1244  if (details.funcname) {
1245  diy_inliner.function = demangle(details.funcname);
1246  } else {
1247  diy_inliner.function = trace.source.function;
1248  }
1249  if (diy_inliner != trace.source) {
1250  trace.inliners.push_back(diy_inliner);
1251  }
1252  }
1253  }
1254  }
1255 #endif
1256  }
1257 
1258  return trace;
1259  }
1260 
1261 private:
1262  bool _bfd_loaded;
1263 
1264  typedef details::handle<bfd *,
1266  bfd_handle_t;
1267 
1268  typedef details::handle<asymbol **> bfd_symtab_t;
1269 
1270  struct bfd_fileobject {
1271  bfd_handle_t handle;
1272  bfd_vma base_addr;
1273  bfd_symtab_t symtab;
1274  bfd_symtab_t dynamic_symtab;
1275  };
1276 
1278  fobj_bfd_map_t _fobj_bfd_map;
1279 
1280  bfd_fileobject &load_object_with_bfd(const std::string &filename_object) {
1281  using namespace details;
1282 
1283  if (!_bfd_loaded) {
1284  using namespace details;
1285  bfd_init();
1286  _bfd_loaded = true;
1287  }
1288 
1289  fobj_bfd_map_t::iterator it = _fobj_bfd_map.find(filename_object);
1290  if (it != _fobj_bfd_map.end()) {
1291  return it->second;
1292  }
1293 
1294  // this new object is empty for now.
1295  bfd_fileobject &r = _fobj_bfd_map[filename_object];
1296 
1297  // we do the work temporary in this one;
1298  bfd_handle_t bfd_handle;
1299 
1300  int fd = open(filename_object.c_str(), O_RDONLY);
1301  bfd_handle.reset(bfd_fdopenr(filename_object.c_str(), "default", fd));
1302  if (!bfd_handle) {
1303  close(fd);
1304  return r;
1305  }
1306 
1307  if (!bfd_check_format(bfd_handle.get(), bfd_object)) {
1308  return r; // not an object? You lose.
1309  }
1310 
1311  if ((bfd_get_file_flags(bfd_handle.get()) & HAS_SYMS) == 0) {
1312  return r; // that's what happen when you forget to compile in debug.
1313  }
1314 
1315  ssize_t symtab_storage_size = bfd_get_symtab_upper_bound(bfd_handle.get());
1316 
1317  ssize_t dyn_symtab_storage_size =
1318  bfd_get_dynamic_symtab_upper_bound(bfd_handle.get());
1319 
1320  if (symtab_storage_size <= 0 && dyn_symtab_storage_size <= 0) {
1321  return r; // weird, is the file is corrupted?
1322  }
1323 
1324  bfd_symtab_t symtab, dynamic_symtab;
1325  ssize_t symcount = 0, dyn_symcount = 0;
1326 
1327  if (symtab_storage_size > 0) {
1328  symtab.reset(static_cast<bfd_symbol **>(
1329  malloc(static_cast<size_t>(symtab_storage_size))));
1330  symcount = bfd_canonicalize_symtab(bfd_handle.get(), symtab.get());
1331  }
1332 
1333  if (dyn_symtab_storage_size > 0) {
1334  dynamic_symtab.reset(static_cast<bfd_symbol **>(
1335  malloc(static_cast<size_t>(dyn_symtab_storage_size))));
1336  dyn_symcount = bfd_canonicalize_dynamic_symtab(bfd_handle.get(),
1337  dynamic_symtab.get());
1338  }
1339 
1340  if (symcount <= 0 && dyn_symcount <= 0) {
1341  return r; // damned, that's a stripped file that you got there!
1342  }
1343 
1344  r.handle = move(bfd_handle);
1345  r.symtab = move(symtab);
1346  r.dynamic_symtab = move(dynamic_symtab);
1347  return r;
1348  }
1349 
1350  struct find_sym_result {
1351  bool found;
1352  const char *filename;
1353  const char *funcname;
1354  unsigned int line;
1355  };
1356 
1357  struct find_sym_context {
1358  TraceResolverLinuxImpl *self;
1359  bfd_fileobject *fobj;
1360  void *addr;
1361  void *base_addr;
1362  find_sym_result result;
1363  };
1364 
1365  find_sym_result find_symbol_details(bfd_fileobject &fobj, void *addr,
1366  void *base_addr) {
1367  find_sym_context context;
1368  context.self = this;
1369  context.fobj = &fobj;
1370  context.addr = addr;
1371  context.base_addr = base_addr;
1372  context.result.found = false;
1373  bfd_map_over_sections(fobj.handle.get(), &find_in_section_trampoline,
1374  static_cast<void *>(&context));
1375  return context.result;
1376  }
1377 
1378  static void find_in_section_trampoline(bfd *, asection *section, void *data) {
1379  find_sym_context *context = static_cast<find_sym_context *>(data);
1380  context->self->find_in_section(
1381  reinterpret_cast<bfd_vma>(context->addr),
1382  reinterpret_cast<bfd_vma>(context->base_addr), *context->fobj, section,
1383  context->result);
1384  }
1385 
1386  void find_in_section(bfd_vma addr, bfd_vma base_addr, bfd_fileobject &fobj,
1387  asection *section, find_sym_result &result) {
1388  if (result.found)
1389  return;
1390 
1391 #ifdef bfd_get_section_flags
1392  if ((bfd_get_section_flags(fobj.handle.get(), section) & SEC_ALLOC) == 0)
1393 #else
1394  if ((bfd_section_flags(section) & SEC_ALLOC) == 0)
1395 #endif
1396  return; // a debug section is never loaded automatically.
1397 
1398 #ifdef bfd_get_section_vma
1399  bfd_vma sec_addr = bfd_get_section_vma(fobj.handle.get(), section);
1400 #else
1401  bfd_vma sec_addr = bfd_section_vma(section);
1402 #endif
1403 #ifdef bfd_get_section_size
1404  bfd_size_type size = bfd_get_section_size(section);
1405 #else
1406  bfd_size_type size = bfd_section_size(section);
1407 #endif
1408 
1409  // are we in the boundaries of the section?
1410  if (addr < sec_addr || addr >= sec_addr + size) {
1411  addr -= base_addr; // oups, a relocated object, lets try again...
1412  if (addr < sec_addr || addr >= sec_addr + size) {
1413  return;
1414  }
1415  }
1416 
1417 #if defined(__clang__)
1418 #pragma clang diagnostic push
1419 #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
1420 #endif
1421  if (!result.found && fobj.symtab) {
1422  result.found = bfd_find_nearest_line(
1423  fobj.handle.get(), section, fobj.symtab.get(), addr - sec_addr,
1424  &result.filename, &result.funcname, &result.line);
1425  }
1426 
1427  if (!result.found && fobj.dynamic_symtab) {
1428  result.found = bfd_find_nearest_line(
1429  fobj.handle.get(), section, fobj.dynamic_symtab.get(),
1430  addr - sec_addr, &result.filename, &result.funcname, &result.line);
1431  }
1432 #if defined(__clang__)
1433 #pragma clang diagnostic pop
1434 #endif
1435  }
1436 
1438  backtrace_inliners(bfd_fileobject &fobj, find_sym_result previous_result) {
1439  // This function can be called ONLY after a SUCCESSFUL call to
1440  // find_symbol_details. The state is global to the bfd_handle.
1442  while (previous_result.found) {
1443  find_sym_result result;
1444  result.found = bfd_find_inliner_info(fobj.handle.get(), &result.filename,
1445  &result.funcname, &result.line);
1446 
1447  if (result
1448  .found) /* and not (
1449  cstrings_eq(previous_result.filename,
1450  result.filename) and
1451  cstrings_eq(previous_result.funcname, result.funcname)
1452  and result.line == previous_result.line
1453  )) */
1454  {
1455  ResolvedTrace::SourceLoc src_loc;
1456  src_loc.line = result.line;
1457  if (result.filename) {
1458  src_loc.filename = result.filename;
1459  }
1460  if (result.funcname) {
1461  src_loc.function = demangle(result.funcname);
1462  }
1463  results.push_back(src_loc);
1464  }
1465  previous_result = result;
1466  }
1467  return results;
1468  }
1469 
1470  bool cstrings_eq(const char *a, const char *b) {
1471  if (!a || !b) {
1472  return false;
1473  }
1474  return strcmp(a, b) == 0;
1475  }
1476 };
1477 #endif // BACKWARD_HAS_BFD == 1
1478 
1479 #if BACKWARD_HAS_DW == 1
1480 
1481 template <>
1482 class TraceResolverLinuxImpl<trace_resolver_tag::libdw>
1483  : public TraceResolverLinuxBase {
1484 public:
1485  TraceResolverLinuxImpl() : _dwfl_handle_initialized(false) {}
1486 
1487  template <class ST> void load_stacktrace(ST &) {}
1488 
1490  using namespace details;
1491 
1492  Dwarf_Addr trace_addr = (Dwarf_Addr)trace.addr;
1493 
1494  if (!_dwfl_handle_initialized) {
1495  // initialize dwfl...
1496  _dwfl_cb.reset(new Dwfl_Callbacks);
1497  _dwfl_cb->find_elf = &dwfl_linux_proc_find_elf;
1498  _dwfl_cb->find_debuginfo = &dwfl_standard_find_debuginfo;
1499  _dwfl_cb->debuginfo_path = 0;
1500 
1501  _dwfl_handle.reset(dwfl_begin(_dwfl_cb.get()));
1502  _dwfl_handle_initialized = true;
1503 
1504  if (!_dwfl_handle) {
1505  return trace;
1506  }
1507 
1508  // ...from the current process.
1509  dwfl_report_begin(_dwfl_handle.get());
1510  int r = dwfl_linux_proc_report(_dwfl_handle.get(), getpid());
1511  dwfl_report_end(_dwfl_handle.get(), NULL, NULL);
1512  if (r < 0) {
1513  return trace;
1514  }
1515  }
1516 
1517  if (!_dwfl_handle) {
1518  return trace;
1519  }
1520 
1521  // find the module (binary object) that contains the trace's address.
1522  // This is not using any debug information, but the addresses ranges of
1523  // all the currently loaded binary object.
1524  Dwfl_Module *mod = dwfl_addrmodule(_dwfl_handle.get(), trace_addr);
1525  if (mod) {
1526  // now that we found it, lets get the name of it, this will be the
1527  // full path to the running binary or one of the loaded library.
1528  const char *module_name = dwfl_module_info(mod, 0, 0, 0, 0, 0, 0, 0);
1529  if (module_name) {
1530  trace.object_filename = module_name;
1531  }
1532  // We also look after the name of the symbol, equal or before this
1533  // address. This is found by walking the symtab. We should get the
1534  // symbol corresponding to the function (mangled) containing the
1535  // address. If the code corresponding to the address was inlined,
1536  // this is the name of the out-most inliner function.
1537  const char *sym_name = dwfl_module_addrname(mod, trace_addr);
1538  if (sym_name) {
1539  trace.object_function = demangle(sym_name);
1540  }
1541  }
1542 
1543  // now let's get serious, and find out the source location (file and
1544  // line number) of the address.
1545 
1546  // This function will look in .debug_aranges for the address and map it
1547  // to the location of the compilation unit DIE in .debug_info and
1548  // return it.
1549  Dwarf_Addr mod_bias = 0;
1550  Dwarf_Die *cudie = dwfl_module_addrdie(mod, trace_addr, &mod_bias);
1551 
1552 #if 1
1553  if (!cudie) {
1554  // Sadly clang does not generate the section .debug_aranges, thus
1555  // dwfl_module_addrdie will fail early. Clang doesn't either set
1556  // the lowpc/highpc/range info for every compilation unit.
1557  //
1558  // So in order to save the world:
1559  // for every compilation unit, we will iterate over every single
1560  // DIEs. Normally functions should have a lowpc/highpc/range, which
1561  // we will use to infer the compilation unit.
1562 
1563  // note that this is probably badly inefficient.
1564  while ((cudie = dwfl_module_nextcu(mod, cudie, &mod_bias))) {
1565  Dwarf_Die die_mem;
1566  Dwarf_Die *fundie =
1567  find_fundie_by_pc(cudie, trace_addr - mod_bias, &die_mem);
1568  if (fundie) {
1569  break;
1570  }
1571  }
1572  }
1573 #endif
1574 
1575 //#define BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
1576 #ifdef BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
1577  if (!cudie) {
1578  // If it's still not enough, lets dive deeper in the shit, and try
1579  // to save the world again: for every compilation unit, we will
1580  // load the corresponding .debug_line section, and see if we can
1581  // find our address in it.
1582 
1583  Dwarf_Addr cfi_bias;
1584  Dwarf_CFI *cfi_cache = dwfl_module_eh_cfi(mod, &cfi_bias);
1585 
1586  Dwarf_Addr bias;
1587  while ((cudie = dwfl_module_nextcu(mod, cudie, &bias))) {
1588  if (dwarf_getsrc_die(cudie, trace_addr - bias)) {
1589 
1590  // ...but if we get a match, it might be a false positive
1591  // because our (address - bias) might as well be valid in a
1592  // different compilation unit. So we throw our last card on
1593  // the table and lookup for the address into the .eh_frame
1594  // section.
1595 
1596  handle<Dwarf_Frame *> frame;
1597  dwarf_cfi_addrframe(cfi_cache, trace_addr - cfi_bias, &frame);
1598  if (frame) {
1599  break;
1600  }
1601  }
1602  }
1603  }
1604 #endif
1605 
1606  if (!cudie) {
1607  return trace; // this time we lost the game :/
1608  }
1609 
1610  // Now that we have a compilation unit DIE, this function will be able
1611  // to load the corresponding section in .debug_line (if not already
1612  // loaded) and hopefully find the source location mapped to our
1613  // address.
1614  Dwarf_Line *srcloc = dwarf_getsrc_die(cudie, trace_addr - mod_bias);
1615 
1616  if (srcloc) {
1617  const char *srcfile = dwarf_linesrc(srcloc, 0, 0);
1618  if (srcfile) {
1619  trace.source.filename = srcfile;
1620  }
1621  int line = 0, col = 0;
1622  dwarf_lineno(srcloc, &line);
1623  dwarf_linecol(srcloc, &col);
1624  trace.source.line = line;
1625  trace.source.col = col;
1626  }
1627 
1628  deep_first_search_by_pc(cudie, trace_addr - mod_bias,
1629  inliners_search_cb(trace));
1630  if (trace.source.function.size() == 0) {
1631  // fallback.
1632  trace.source.function = trace.object_function;
1633  }
1634 
1635  return trace;
1636  }
1637 
1638 private:
1640  dwfl_handle_t;
1642  _dwfl_cb;
1643  dwfl_handle_t _dwfl_handle;
1644  bool _dwfl_handle_initialized;
1645 
1646  // defined here because in C++98, template function cannot take locally
1647  // defined types... grrr.
1648  struct inliners_search_cb {
1649  void operator()(Dwarf_Die *die) {
1650  switch (dwarf_tag(die)) {
1651  const char *name;
1652  case DW_TAG_subprogram:
1653  if ((name = dwarf_diename(die))) {
1654  trace.source.function = name;
1655  }
1656  break;
1657 
1658  case DW_TAG_inlined_subroutine:
1660  Dwarf_Attribute attr_mem;
1661 
1662  if ((name = dwarf_diename(die))) {
1663  sloc.function = name;
1664  }
1665  if ((name = die_call_file(die))) {
1666  sloc.filename = name;
1667  }
1668 
1669  Dwarf_Word line = 0, col = 0;
1670  dwarf_formudata(dwarf_attr(die, DW_AT_call_line, &attr_mem), &line);
1671  dwarf_formudata(dwarf_attr(die, DW_AT_call_column, &attr_mem), &col);
1672  sloc.line = (unsigned)line;
1673  sloc.col = (unsigned)col;
1674 
1675  trace.inliners.push_back(sloc);
1676  break;
1677  };
1678  }
1679  ResolvedTrace &trace;
1680  inliners_search_cb(ResolvedTrace &t) : trace(t) {}
1681  };
1682 
1683  static bool die_has_pc(Dwarf_Die *die, Dwarf_Addr pc) {
1684  Dwarf_Addr low, high;
1685 
1686  // continuous range
1687  if (dwarf_hasattr(die, DW_AT_low_pc) && dwarf_hasattr(die, DW_AT_high_pc)) {
1688  if (dwarf_lowpc(die, &low) != 0) {
1689  return false;
1690  }
1691  if (dwarf_highpc(die, &high) != 0) {
1692  Dwarf_Attribute attr_mem;
1693  Dwarf_Attribute *attr = dwarf_attr(die, DW_AT_high_pc, &attr_mem);
1694  Dwarf_Word value;
1695  if (dwarf_formudata(attr, &value) != 0) {
1696  return false;
1697  }
1698  high = low + value;
1699  }
1700  return pc >= low && pc < high;
1701  }
1702 
1703  // non-continuous range.
1704  Dwarf_Addr base;
1705  ptrdiff_t offset = 0;
1706  while ((offset = dwarf_ranges(die, offset, &base, &low, &high)) > 0) {
1707  if (pc >= low && pc < high) {
1708  return true;
1709  }
1710  }
1711  return false;
1712  }
1713 
1714  static Dwarf_Die *find_fundie_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
1715  Dwarf_Die *result) {
1716  if (dwarf_child(parent_die, result) != 0) {
1717  return 0;
1718  }
1719 
1720  Dwarf_Die *die = result;
1721  do {
1722  switch (dwarf_tag(die)) {
1723  case DW_TAG_subprogram:
1724  case DW_TAG_inlined_subroutine:
1725  if (die_has_pc(die, pc)) {
1726  return result;
1727  }
1728  };
1729  bool declaration = false;
1730  Dwarf_Attribute attr_mem;
1731  dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
1732  &declaration);
1733  if (!declaration) {
1734  // let's be curious and look deeper in the tree,
1735  // function are not necessarily at the first level, but
1736  // might be nested inside a namespace, structure etc.
1737  Dwarf_Die die_mem;
1738  Dwarf_Die *indie = find_fundie_by_pc(die, pc, &die_mem);
1739  if (indie) {
1740  *result = die_mem;
1741  return result;
1742  }
1743  }
1744  } while (dwarf_siblingof(die, result) == 0);
1745  return 0;
1746  }
1747 
1748  template <typename CB>
1749  static bool deep_first_search_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
1750  CB cb) {
1751  Dwarf_Die die_mem;
1752  if (dwarf_child(parent_die, &die_mem) != 0) {
1753  return false;
1754  }
1755 
1756  bool branch_has_pc = false;
1757  Dwarf_Die *die = &die_mem;
1758  do {
1759  bool declaration = false;
1760  Dwarf_Attribute attr_mem;
1761  dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
1762  &declaration);
1763  if (!declaration) {
1764  // let's be curious and look deeper in the tree, function are
1765  // not necessarily at the first level, but might be nested
1766  // inside a namespace, structure, a function, an inlined
1767  // function etc.
1768  branch_has_pc = deep_first_search_by_pc(die, pc, cb);
1769  }
1770  if (!branch_has_pc) {
1771  branch_has_pc = die_has_pc(die, pc);
1772  }
1773  if (branch_has_pc) {
1774  cb(die);
1775  }
1776  } while (dwarf_siblingof(die, &die_mem) == 0);
1777  return branch_has_pc;
1778  }
1779 
1780  static const char *die_call_file(Dwarf_Die *die) {
1781  Dwarf_Attribute attr_mem;
1782  Dwarf_Sword file_idx = 0;
1783 
1784  dwarf_formsdata(dwarf_attr(die, DW_AT_call_file, &attr_mem), &file_idx);
1785 
1786  if (file_idx == 0) {
1787  return 0;
1788  }
1789 
1790  Dwarf_Die die_mem;
1791  Dwarf_Die *cudie = dwarf_diecu(die, &die_mem, 0, 0);
1792  if (!cudie) {
1793  return 0;
1794  }
1795 
1796  Dwarf_Files *files = 0;
1797  size_t nfiles;
1798  dwarf_getsrcfiles(cudie, &files, &nfiles);
1799  if (!files) {
1800  return 0;
1801  }
1802 
1803  return dwarf_filesrc(files, file_idx, 0, 0);
1804  }
1805 };
1806 #endif // BACKWARD_HAS_DW == 1
1807 
1808 #if BACKWARD_HAS_DWARF == 1
1809 
1810 template <>
1811 class TraceResolverLinuxImpl<trace_resolver_tag::libdwarf>
1812  : public TraceResolverLinuxBase {
1813 public:
1814  TraceResolverLinuxImpl() : _dwarf_loaded(false) {}
1815 
1816  template <class ST> void load_stacktrace(ST &) {}
1817 
1819  // trace.addr is a virtual address in memory pointing to some code.
1820  // Let's try to find from which loaded object it comes from.
1821  // The loaded object can be yourself btw.
1822 
1823  Dl_info symbol_info;
1824  int dladdr_result = 0;
1825 #if defined(__GLIBC__)
1826  link_map *link_map;
1827  // We request the link map so we can get information about offsets
1828  dladdr_result =
1829  dladdr1(trace.addr, &symbol_info, reinterpret_cast<void **>(&link_map),
1830  RTLD_DL_LINKMAP);
1831 #else
1832  // Android doesn't have dladdr1. Don't use the linker map.
1833  dladdr_result = dladdr(trace.addr, &symbol_info);
1834 #endif
1835  if (!dladdr_result) {
1836  return trace; // dat broken trace...
1837  }
1838 
1839  // Now we get in symbol_info:
1840  // .dli_fname:
1841  // pathname of the shared object that contains the address.
1842  // .dli_fbase:
1843  // where the object is loaded in memory.
1844  // .dli_sname:
1845  // the name of the nearest symbol to trace.addr, we expect a
1846  // function name.
1847  // .dli_saddr:
1848  // the exact address corresponding to .dli_sname.
1849  //
1850  // And in link_map:
1851  // .l_addr:
1852  // difference between the address in the ELF file and the address
1853  // in memory
1854  // l_name:
1855  // absolute pathname where the object was found
1856 
1857  if (symbol_info.dli_sname) {
1858  trace.object_function = demangle(symbol_info.dli_sname);
1859  }
1860 
1861  if (!symbol_info.dli_fname) {
1862  return trace;
1863  }
1864 
1865  trace.object_filename = resolve_exec_path(symbol_info);
1866  dwarf_fileobject &fobj = load_object_with_dwarf(symbol_info.dli_fname);
1867  if (!fobj.dwarf_handle) {
1868  return trace; // sad, we couldn't load the object :(
1869  }
1870 
1871 #if defined(__GLIBC__)
1872  // Convert the address to a module relative one by looking at
1873  // the module's loading address in the link map
1874  Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr) -
1875  reinterpret_cast<uintptr_t>(link_map->l_addr);
1876 #else
1877  Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr);
1878 #endif
1879 
1880  if (trace.object_function.empty()) {
1881  symbol_cache_t::iterator it = fobj.symbol_cache.lower_bound(address);
1882 
1883  if (it != fobj.symbol_cache.end()) {
1884  if (it->first != address) {
1885  if (it != fobj.symbol_cache.begin()) {
1886  --it;
1887  }
1888  }
1889  trace.object_function = demangle(it->second.c_str());
1890  }
1891  }
1892 
1893  // Get the Compilation Unit DIE for the address
1894  Dwarf_Die die = find_die(fobj, address);
1895 
1896  if (!die) {
1897  return trace; // this time we lost the game :/
1898  }
1899 
1900  // libdwarf doesn't give us direct access to its objects, it always
1901  // allocates a copy for the caller. We keep that copy alive in a cache
1902  // and we deallocate it later when it's no longer required.
1903  die_cache_entry &die_object = get_die_cache(fobj, die);
1904  if (die_object.isEmpty())
1905  return trace; // We have no line section for this DIE
1906 
1907  die_linemap_t::iterator it = die_object.line_section.lower_bound(address);
1908 
1909  if (it != die_object.line_section.end()) {
1910  if (it->first != address) {
1911  if (it == die_object.line_section.begin()) {
1912  // If we are on the first item of the line section
1913  // but the address does not match it means that
1914  // the address is below the range of the DIE. Give up.
1915  return trace;
1916  } else {
1917  --it;
1918  }
1919  }
1920  } else {
1921  return trace; // We didn't find the address.
1922  }
1923 
1924  // Get the Dwarf_Line that the address points to and call libdwarf
1925  // to get source file, line and column info.
1926  Dwarf_Line line = die_object.line_buffer[it->second];
1927  Dwarf_Error error = DW_DLE_NE;
1928 
1929  char *filename;
1930  if (dwarf_linesrc(line, &filename, &error) == DW_DLV_OK) {
1931  trace.source.filename = std::string(filename);
1932  dwarf_dealloc(fobj.dwarf_handle.get(), filename, DW_DLA_STRING);
1933  }
1934 
1935  Dwarf_Unsigned number = 0;
1936  if (dwarf_lineno(line, &number, &error) == DW_DLV_OK) {
1937  trace.source.line = number;
1938  } else {
1939  trace.source.line = 0;
1940  }
1941 
1942  if (dwarf_lineoff_b(line, &number, &error) == DW_DLV_OK) {
1943  trace.source.col = number;
1944  } else {
1945  trace.source.col = 0;
1946  }
1947 
1948  std::vector<std::string> namespace_stack;
1949  deep_first_search_by_pc(fobj, die, address, namespace_stack,
1950  inliners_search_cb(trace, fobj, die));
1951 
1952  dwarf_dealloc(fobj.dwarf_handle.get(), die, DW_DLA_DIE);
1953 
1954  return trace;
1955  }
1956 
1957 public:
1958  static int close_dwarf(Dwarf_Debug dwarf) {
1959  return dwarf_finish(dwarf, NULL);
1960  }
1961 
1962 private:
1963  bool _dwarf_loaded;
1964 
1966  dwarf_file_t;
1967 
1969  dwarf_elf_t;
1970 
1971  typedef details::handle<Dwarf_Debug,
1973  dwarf_handle_t;
1974 
1975  typedef std::map<Dwarf_Addr, int> die_linemap_t;
1976 
1977  typedef std::map<Dwarf_Off, Dwarf_Off> die_specmap_t;
1978 
1979  struct die_cache_entry {
1980  die_specmap_t spec_section;
1981  die_linemap_t line_section;
1982  Dwarf_Line *line_buffer;
1983  Dwarf_Signed line_count;
1984  Dwarf_Line_Context line_context;
1985 
1986  inline bool isEmpty() {
1987  return line_buffer == NULL || line_count == 0 || line_context == NULL ||
1988  line_section.empty();
1989  }
1990 
1991  die_cache_entry() : line_buffer(0), line_count(0), line_context(0) {}
1992 
1993  ~die_cache_entry() {
1994  if (line_context) {
1995  dwarf_srclines_dealloc_b(line_context);
1996  }
1997  }
1998  };
1999 
2000  typedef std::map<Dwarf_Off, die_cache_entry> die_cache_t;
2001 
2002  typedef std::map<uintptr_t, std::string> symbol_cache_t;
2003 
2004  struct dwarf_fileobject {
2005  dwarf_file_t file_handle;
2006  dwarf_elf_t elf_handle;
2007  dwarf_handle_t dwarf_handle;
2008  symbol_cache_t symbol_cache;
2009 
2010  // Die cache
2011  die_cache_t die_cache;
2012  die_cache_entry *current_cu;
2013  };
2014 
2016  fobj_dwarf_map_t;
2017  fobj_dwarf_map_t _fobj_dwarf_map;
2018 
2019  static bool cstrings_eq(const char *a, const char *b) {
2020  if (!a || !b) {
2021  return false;
2022  }
2023  return strcmp(a, b) == 0;
2024  }
2025 
2026  dwarf_fileobject &load_object_with_dwarf(const std::string &filename_object) {
2027 
2028  if (!_dwarf_loaded) {
2029  // Set the ELF library operating version
2030  // If that fails there's nothing we can do
2031  _dwarf_loaded = elf_version(EV_CURRENT) != EV_NONE;
2032  }
2033 
2034  fobj_dwarf_map_t::iterator it = _fobj_dwarf_map.find(filename_object);
2035  if (it != _fobj_dwarf_map.end()) {
2036  return it->second;
2037  }
2038 
2039  // this new object is empty for now
2040  dwarf_fileobject &r = _fobj_dwarf_map[filename_object];
2041 
2042  dwarf_file_t file_handle;
2043  file_handle.reset(open(filename_object.c_str(), O_RDONLY));
2044  if (file_handle.get() < 0) {
2045  return r;
2046  }
2047 
2048  // Try to get an ELF handle. We need to read the ELF sections
2049  // because we want to see if there is a .gnu_debuglink section
2050  // that points to a split debug file
2051  dwarf_elf_t elf_handle;
2052  elf_handle.reset(elf_begin(file_handle.get(), ELF_C_READ, NULL));
2053  if (!elf_handle) {
2054  return r;
2055  }
2056 
2057  const char *e_ident = elf_getident(elf_handle.get(), 0);
2058  if (!e_ident) {
2059  return r;
2060  }
2061 
2062  // Get the number of sections
2063  // We use the new APIs as elf_getshnum is deprecated
2064  size_t shdrnum = 0;
2065  if (elf_getshdrnum(elf_handle.get(), &shdrnum) == -1) {
2066  return r;
2067  }
2068 
2069  // Get the index to the string section
2070  size_t shdrstrndx = 0;
2071  if (elf_getshdrstrndx(elf_handle.get(), &shdrstrndx) == -1) {
2072  return r;
2073  }
2074 
2075  std::string debuglink;
2076  // Iterate through the ELF sections to try to get a gnu_debuglink
2077  // note and also to cache the symbol table.
2078  // We go the preprocessor way to avoid having to create templated
2079  // classes or using gelf (which might throw a compiler error if 64 bit
2080  // is not supported
2081 #define ELF_GET_DATA(ARCH) \
2082  Elf_Scn *elf_section = 0; \
2083  Elf_Data *elf_data = 0; \
2084  Elf##ARCH##_Shdr *section_header = 0; \
2085  Elf_Scn *symbol_section = 0; \
2086  size_t symbol_count = 0; \
2087  size_t symbol_strings = 0; \
2088  Elf##ARCH##_Sym *symbol = 0; \
2089  const char *section_name = 0; \
2090  \
2091  while ((elf_section = elf_nextscn(elf_handle.get(), elf_section)) != NULL) { \
2092  section_header = elf##ARCH##_getshdr(elf_section); \
2093  if (section_header == NULL) { \
2094  return r; \
2095  } \
2096  \
2097  if ((section_name = elf_strptr(elf_handle.get(), shdrstrndx, \
2098  section_header->sh_name)) == NULL) { \
2099  return r; \
2100  } \
2101  \
2102  if (cstrings_eq(section_name, ".gnu_debuglink")) { \
2103  elf_data = elf_getdata(elf_section, NULL); \
2104  if (elf_data && elf_data->d_size > 0) { \
2105  debuglink = \
2106  std::string(reinterpret_cast<const char *>(elf_data->d_buf)); \
2107  } \
2108  } \
2109  \
2110  switch (section_header->sh_type) { \
2111  case SHT_SYMTAB: \
2112  symbol_section = elf_section; \
2113  symbol_count = section_header->sh_size / section_header->sh_entsize; \
2114  symbol_strings = section_header->sh_link; \
2115  break; \
2116  \
2117  /* We use .dynsyms as a last resort, we prefer .symtab */ \
2118  case SHT_DYNSYM: \
2119  if (!symbol_section) { \
2120  symbol_section = elf_section; \
2121  symbol_count = section_header->sh_size / section_header->sh_entsize; \
2122  symbol_strings = section_header->sh_link; \
2123  } \
2124  break; \
2125  } \
2126  } \
2127  \
2128  if (symbol_section && symbol_count && symbol_strings) { \
2129  elf_data = elf_getdata(symbol_section, NULL); \
2130  symbol = reinterpret_cast<Elf##ARCH##_Sym *>(elf_data->d_buf); \
2131  for (size_t i = 0; i < symbol_count; ++i) { \
2132  int type = ELF##ARCH##_ST_TYPE(symbol->st_info); \
2133  if (type == STT_FUNC && symbol->st_value > 0) { \
2134  r.symbol_cache[symbol->st_value] = std::string( \
2135  elf_strptr(elf_handle.get(), symbol_strings, symbol->st_name)); \
2136  } \
2137  ++symbol; \
2138  } \
2139  }
2140 
2141  if (e_ident[EI_CLASS] == ELFCLASS32) {
2142  ELF_GET_DATA(32)
2143  } else if (e_ident[EI_CLASS] == ELFCLASS64) {
2144  // libelf might have been built without 64 bit support
2145 #if __LIBELF64
2146  ELF_GET_DATA(64)
2147 #endif
2148  }
2149 
2150  if (!debuglink.empty()) {
2151  // We have a debuglink section! Open an elf instance on that
2152  // file instead. If we can't open the file, then return
2153  // the elf handle we had already opened.
2154  dwarf_file_t debuglink_file;
2155  debuglink_file.reset(open(debuglink.c_str(), O_RDONLY));
2156  if (debuglink_file.get() > 0) {
2157  dwarf_elf_t debuglink_elf;
2158  debuglink_elf.reset(elf_begin(debuglink_file.get(), ELF_C_READ, NULL));
2159 
2160  // If we have a valid elf handle, return the new elf handle
2161  // and file handle and discard the original ones
2162  if (debuglink_elf) {
2163  elf_handle = move(debuglink_elf);
2164  file_handle = move(debuglink_file);
2165  }
2166  }
2167  }
2168 
2169  // Ok, we have a valid ELF handle, let's try to get debug symbols
2170  Dwarf_Debug dwarf_debug;
2171  Dwarf_Error error = DW_DLE_NE;
2172  dwarf_handle_t dwarf_handle;
2173 
2174  int dwarf_result = dwarf_elf_init(elf_handle.get(), DW_DLC_READ, NULL, NULL,
2175  &dwarf_debug, &error);
2176 
2177  // We don't do any special handling for DW_DLV_NO_ENTRY specially.
2178  // If we get an error, or the file doesn't have debug information
2179  // we just return.
2180  if (dwarf_result != DW_DLV_OK) {
2181  return r;
2182  }
2183 
2184  dwarf_handle.reset(dwarf_debug);
2185 
2186  r.file_handle = move(file_handle);
2187  r.elf_handle = move(elf_handle);
2188  r.dwarf_handle = move(dwarf_handle);
2189 
2190  return r;
2191  }
2192 
2193  die_cache_entry &get_die_cache(dwarf_fileobject &fobj, Dwarf_Die die) {
2194  Dwarf_Error error = DW_DLE_NE;
2195 
2196  // Get the die offset, we use it as the cache key
2197  Dwarf_Off die_offset;
2198  if (dwarf_dieoffset(die, &die_offset, &error) != DW_DLV_OK) {
2199  die_offset = 0;
2200  }
2201 
2202  die_cache_t::iterator it = fobj.die_cache.find(die_offset);
2203 
2204  if (it != fobj.die_cache.end()) {
2205  fobj.current_cu = &it->second;
2206  return it->second;
2207  }
2208 
2209  die_cache_entry &de = fobj.die_cache[die_offset];
2210  fobj.current_cu = &de;
2211 
2212  Dwarf_Addr line_addr;
2213  Dwarf_Small table_count;
2214 
2215  // The addresses in the line section are not fully sorted (they might
2216  // be sorted by block of code belonging to the same file), which makes
2217  // it necessary to do so before searching is possible.
2218  //
2219  // As libdwarf allocates a copy of everything, let's get the contents
2220  // of the line section and keep it around. We also create a map of
2221  // program counter to line table indices so we can search by address
2222  // and get the line buffer index.
2223  //
2224  // To make things more difficult, the same address can span more than
2225  // one line, so we need to keep the index pointing to the first line
2226  // by using insert instead of the map's [ operator.
2227 
2228  // Get the line context for the DIE
2229  if (dwarf_srclines_b(die, 0, &table_count, &de.line_context, &error) ==
2230  DW_DLV_OK) {
2231  // Get the source lines for this line context, to be deallocated
2232  // later
2233  if (dwarf_srclines_from_linecontext(de.line_context, &de.line_buffer,
2234  &de.line_count,
2235  &error) == DW_DLV_OK) {
2236 
2237  // Add all the addresses to our map
2238  for (int i = 0; i < de.line_count; i++) {
2239  if (dwarf_lineaddr(de.line_buffer[i], &line_addr, &error) !=
2240  DW_DLV_OK) {
2241  line_addr = 0;
2242  }
2243  de.line_section.insert(std::pair<Dwarf_Addr, int>(line_addr, i));
2244  }
2245  }
2246  }
2247 
2248  // For each CU, cache the function DIEs that contain the
2249  // DW_AT_specification attribute. When building with -g3 the function
2250  // DIEs are separated in declaration and specification, with the
2251  // declaration containing only the name and parameters and the
2252  // specification the low/high pc and other compiler attributes.
2253  //
2254  // We cache those specifications so we don't skip over the declarations,
2255  // because they have no pc, and we can do namespace resolution for
2256  // DWARF function names.
2257  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2258  Dwarf_Die current_die = 0;
2259  if (dwarf_child(die, &current_die, &error) == DW_DLV_OK) {
2260  for (;;) {
2261  Dwarf_Die sibling_die = 0;
2262 
2263  Dwarf_Half tag_value;
2264  dwarf_tag(current_die, &tag_value, &error);
2265 
2266  if (tag_value == DW_TAG_subprogram ||
2267  tag_value == DW_TAG_inlined_subroutine) {
2268 
2269  Dwarf_Bool has_attr = 0;
2270  if (dwarf_hasattr(current_die, DW_AT_specification, &has_attr,
2271  &error) == DW_DLV_OK) {
2272  if (has_attr) {
2273  Dwarf_Attribute attr_mem;
2274  if (dwarf_attr(current_die, DW_AT_specification, &attr_mem,
2275  &error) == DW_DLV_OK) {
2276  Dwarf_Off spec_offset = 0;
2277  if (dwarf_formref(attr_mem, &spec_offset, &error) ==
2278  DW_DLV_OK) {
2279  Dwarf_Off spec_die_offset;
2280  if (dwarf_dieoffset(current_die, &spec_die_offset, &error) ==
2281  DW_DLV_OK) {
2282  de.spec_section[spec_offset] = spec_die_offset;
2283  }
2284  }
2285  }
2286  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2287  }
2288  }
2289  }
2290 
2291  int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
2292  if (result == DW_DLV_ERROR) {
2293  break;
2294  } else if (result == DW_DLV_NO_ENTRY) {
2295  break;
2296  }
2297 
2298  if (current_die != die) {
2299  dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2300  current_die = 0;
2301  }
2302 
2303  current_die = sibling_die;
2304  }
2305  }
2306  return de;
2307  }
2308 
2309  static Dwarf_Die get_referenced_die(Dwarf_Debug dwarf, Dwarf_Die die,
2310  Dwarf_Half attr, bool global) {
2311  Dwarf_Error error = DW_DLE_NE;
2312  Dwarf_Attribute attr_mem;
2313 
2314  Dwarf_Die found_die = NULL;
2315  if (dwarf_attr(die, attr, &attr_mem, &error) == DW_DLV_OK) {
2316  Dwarf_Off offset;
2317  int result = 0;
2318  if (global) {
2319  result = dwarf_global_formref(attr_mem, &offset, &error);
2320  } else {
2321  result = dwarf_formref(attr_mem, &offset, &error);
2322  }
2323 
2324  if (result == DW_DLV_OK) {
2325  if (dwarf_offdie(dwarf, offset, &found_die, &error) != DW_DLV_OK) {
2326  found_die = NULL;
2327  }
2328  }
2329  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2330  }
2331  return found_die;
2332  }
2333 
2334  static std::string get_referenced_die_name(Dwarf_Debug dwarf, Dwarf_Die die,
2335  Dwarf_Half attr, bool global) {
2336  Dwarf_Error error = DW_DLE_NE;
2337  std::string value;
2338 
2339  Dwarf_Die found_die = get_referenced_die(dwarf, die, attr, global);
2340 
2341  if (found_die) {
2342  char *name;
2343  if (dwarf_diename(found_die, &name, &error) == DW_DLV_OK) {
2344  if (name) {
2345  value = std::string(name);
2346  }
2347  dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2348  }
2349  dwarf_dealloc(dwarf, found_die, DW_DLA_DIE);
2350  }
2351 
2352  return value;
2353  }
2354 
2355  // Returns a spec DIE linked to the passed one. The caller should
2356  // deallocate the DIE
2357  static Dwarf_Die get_spec_die(dwarf_fileobject &fobj, Dwarf_Die die) {
2358  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2359  Dwarf_Error error = DW_DLE_NE;
2360  Dwarf_Off die_offset;
2361  if (fobj.current_cu &&
2362  dwarf_die_CU_offset(die, &die_offset, &error) == DW_DLV_OK) {
2363  die_specmap_t::iterator it =
2364  fobj.current_cu->spec_section.find(die_offset);
2365 
2366  // If we have a DIE that completes the current one, check if
2367  // that one has the pc we are looking for
2368  if (it != fobj.current_cu->spec_section.end()) {
2369  Dwarf_Die spec_die = 0;
2370  if (dwarf_offdie(dwarf, it->second, &spec_die, &error) == DW_DLV_OK) {
2371  return spec_die;
2372  }
2373  }
2374  }
2375 
2376  // Maybe we have an abstract origin DIE with the function information?
2377  return get_referenced_die(fobj.dwarf_handle.get(), die,
2378  DW_AT_abstract_origin, true);
2379  }
2380 
2381  static bool die_has_pc(dwarf_fileobject &fobj, Dwarf_Die die, Dwarf_Addr pc) {
2382  Dwarf_Addr low_pc = 0, high_pc = 0;
2383  Dwarf_Half high_pc_form = 0;
2384  Dwarf_Form_Class return_class;
2385  Dwarf_Error error = DW_DLE_NE;
2386  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2387  bool has_lowpc = false;
2388  bool has_highpc = false;
2389  bool has_ranges = false;
2390 
2391  if (dwarf_lowpc(die, &low_pc, &error) == DW_DLV_OK) {
2392  // If we have a low_pc check if there is a high pc.
2393  // If we don't have a high pc this might mean we have a base
2394  // address for the ranges list or just an address.
2395  has_lowpc = true;
2396 
2397  if (dwarf_highpc_b(die, &high_pc, &high_pc_form, &return_class, &error) ==
2398  DW_DLV_OK) {
2399  // We do have a high pc. In DWARF 4+ this is an offset from the
2400  // low pc, but in earlier versions it's an absolute address.
2401 
2402  has_highpc = true;
2403  // In DWARF 2/3 this would be a DW_FORM_CLASS_ADDRESS
2404  if (return_class == DW_FORM_CLASS_CONSTANT) {
2405  high_pc = low_pc + high_pc;
2406  }
2407 
2408  // We have low and high pc, check if our address
2409  // is in that range
2410  return pc >= low_pc && pc < high_pc;
2411  }
2412  } else {
2413  // Reset the low_pc, in case dwarf_lowpc failing set it to some
2414  // undefined value.
2415  low_pc = 0;
2416  }
2417 
2418  // Check if DW_AT_ranges is present and search for the PC in the
2419  // returned ranges list. We always add the low_pc, as it not set it will
2420  // be 0, in case we had a DW_AT_low_pc and DW_AT_ranges pair
2421  bool result = false;
2422 
2423  Dwarf_Attribute attr;
2424  if (dwarf_attr(die, DW_AT_ranges, &attr, &error) == DW_DLV_OK) {
2425 
2426  Dwarf_Off offset;
2427  if (dwarf_global_formref(attr, &offset, &error) == DW_DLV_OK) {
2428  Dwarf_Ranges *ranges;
2429  Dwarf_Signed ranges_count = 0;
2430  Dwarf_Unsigned byte_count = 0;
2431 
2432  if (dwarf_get_ranges_a(dwarf, offset, die, &ranges, &ranges_count,
2433  &byte_count, &error) == DW_DLV_OK) {
2434  has_ranges = ranges_count != 0;
2435  for (int i = 0; i < ranges_count; i++) {
2436  if (ranges[i].dwr_addr1 != 0 &&
2437  pc >= ranges[i].dwr_addr1 + low_pc &&
2438  pc < ranges[i].dwr_addr2 + low_pc) {
2439  result = true;
2440  break;
2441  }
2442  }
2443  dwarf_ranges_dealloc(dwarf, ranges, ranges_count);
2444  }
2445  }
2446  }
2447 
2448  // Last attempt. We might have a single address set as low_pc.
2449  if (!result && low_pc != 0 && pc == low_pc) {
2450  result = true;
2451  }
2452 
2453  // If we don't have lowpc, highpc and ranges maybe this DIE is a
2454  // declaration that relies on a DW_AT_specification DIE that happens
2455  // later. Use the specification cache we filled when we loaded this CU.
2456  if (!result && (!has_lowpc && !has_highpc && !has_ranges)) {
2457  Dwarf_Die spec_die = get_spec_die(fobj, die);
2458  if (spec_die) {
2459  result = die_has_pc(fobj, spec_die, pc);
2460  dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
2461  }
2462  }
2463 
2464  return result;
2465  }
2466 
2467  static void get_type(Dwarf_Debug dwarf, Dwarf_Die die, std::string &type) {
2468  Dwarf_Error error = DW_DLE_NE;
2469 
2470  Dwarf_Die child = 0;
2471  if (dwarf_child(die, &child, &error) == DW_DLV_OK) {
2472  get_type(dwarf, child, type);
2473  }
2474 
2475  if (child) {
2476  type.insert(0, "::");
2477  dwarf_dealloc(dwarf, child, DW_DLA_DIE);
2478  }
2479 
2480  char *name;
2481  if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2482  type.insert(0, std::string(name));
2483  dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2484  } else {
2485  type.insert(0, "<unknown>");
2486  }
2487  }
2488 
2489  static std::string get_type_by_signature(Dwarf_Debug dwarf, Dwarf_Die die) {
2490  Dwarf_Error error = DW_DLE_NE;
2491 
2492  Dwarf_Sig8 signature;
2493  Dwarf_Bool has_attr = 0;
2494  if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) == DW_DLV_OK) {
2495  if (has_attr) {
2496  Dwarf_Attribute attr_mem;
2497  if (dwarf_attr(die, DW_AT_signature, &attr_mem, &error) == DW_DLV_OK) {
2498  if (dwarf_formsig8(attr_mem, &signature, &error) != DW_DLV_OK) {
2499  return std::string("<no type signature>");
2500  }
2501  }
2502  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2503  }
2504  }
2505 
2506  Dwarf_Unsigned next_cu_header;
2507  Dwarf_Sig8 tu_signature;
2508  std::string result;
2509  bool found = false;
2510 
2511  while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, &tu_signature, 0,
2512  &next_cu_header, 0, &error) == DW_DLV_OK) {
2513 
2514  if (strncmp(signature.signature, tu_signature.signature, 8) == 0) {
2515  Dwarf_Die type_cu_die = 0;
2516  if (dwarf_siblingof_b(dwarf, 0, 0, &type_cu_die, &error) == DW_DLV_OK) {
2517  Dwarf_Die child_die = 0;
2518  if (dwarf_child(type_cu_die, &child_die, &error) == DW_DLV_OK) {
2519  get_type(dwarf, child_die, result);
2520  found = !result.empty();
2521  dwarf_dealloc(dwarf, child_die, DW_DLA_DIE);
2522  }
2523  dwarf_dealloc(dwarf, type_cu_die, DW_DLA_DIE);
2524  }
2525  }
2526  }
2527 
2528  if (found) {
2529  while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2530  &next_cu_header, 0, &error) == DW_DLV_OK) {
2531  // Reset the cu header state. Unfortunately, libdwarf's
2532  // next_cu_header API keeps its own iterator per Dwarf_Debug
2533  // that can't be reset. We need to keep fetching elements until
2534  // the end.
2535  }
2536  } else {
2537  // If we couldn't resolve the type just print out the signature
2538  std::ostringstream string_stream;
2539  string_stream << "<0x" << std::hex << std::setfill('0');
2540  for (int i = 0; i < 8; ++i) {
2541  string_stream << std::setw(2) << std::hex
2542  << (int)(unsigned char)(signature.signature[i]);
2543  }
2544  string_stream << ">";
2545  result = string_stream.str();
2546  }
2547  return result;
2548  }
2549 
2550  struct type_context_t {
2551  bool is_const;
2552  bool is_typedef;
2553  bool has_type;
2554  bool has_name;
2555  std::string text;
2556 
2557  type_context_t()
2558  : is_const(false), is_typedef(false), has_type(false), has_name(false) {
2559  }
2560  };
2561 
2562  // Types are resolved from right to left: we get the variable name first
2563  // and then all specifiers (like const or pointer) in a chain of DW_AT_type
2564  // DIEs. Call this function recursively until we get a complete type
2565  // string.
2566  static void set_parameter_string(dwarf_fileobject &fobj, Dwarf_Die die,
2567  type_context_t &context) {
2568  char *name;
2569  Dwarf_Error error = DW_DLE_NE;
2570 
2571  // typedefs contain also the base type, so we skip it and only
2572  // print the typedef name
2573  if (!context.is_typedef) {
2574  if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2575  if (!context.text.empty()) {
2576  context.text.insert(0, " ");
2577  }
2578  context.text.insert(0, std::string(name));
2579  dwarf_dealloc(fobj.dwarf_handle.get(), name, DW_DLA_STRING);
2580  }
2581  } else {
2582  context.is_typedef = false;
2583  context.has_type = true;
2584  if (context.is_const) {
2585  context.text.insert(0, "const ");
2586  context.is_const = false;
2587  }
2588  }
2589 
2590  bool next_type_is_const = false;
2591  bool is_keyword = true;
2592 
2593  Dwarf_Half tag = 0;
2594  Dwarf_Bool has_attr = 0;
2595  if (dwarf_tag(die, &tag, &error) == DW_DLV_OK) {
2596  switch (tag) {
2597  case DW_TAG_structure_type:
2598  case DW_TAG_union_type:
2599  case DW_TAG_class_type:
2600  case DW_TAG_enumeration_type:
2601  context.has_type = true;
2602  if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) ==
2603  DW_DLV_OK) {
2604  // If we have a signature it means the type is defined
2605  // in .debug_types, so we need to load the DIE pointed
2606  // at by the signature and resolve it
2607  if (has_attr) {
2608  std::string type =
2609  get_type_by_signature(fobj.dwarf_handle.get(), die);
2610  if (context.is_const)
2611  type.insert(0, "const ");
2612 
2613  if (!context.text.empty())
2614  context.text.insert(0, " ");
2615  context.text.insert(0, type);
2616  }
2617 
2618  // Treat enums like typedefs, and skip printing its
2619  // base type
2620  context.is_typedef = (tag == DW_TAG_enumeration_type);
2621  }
2622  break;
2623  case DW_TAG_const_type:
2624  next_type_is_const = true;
2625  break;
2626  case DW_TAG_pointer_type:
2627  context.text.insert(0, "*");
2628  break;
2629  case DW_TAG_reference_type:
2630  context.text.insert(0, "&");
2631  break;
2632  case DW_TAG_restrict_type:
2633  context.text.insert(0, "restrict ");
2634  break;
2635  case DW_TAG_rvalue_reference_type:
2636  context.text.insert(0, "&&");
2637  break;
2638  case DW_TAG_volatile_type:
2639  context.text.insert(0, "volatile ");
2640  break;
2641  case DW_TAG_typedef:
2642  // Propagate the const-ness to the next type
2643  // as typedefs are linked to its base type
2644  next_type_is_const = context.is_const;
2645  context.is_typedef = true;
2646  context.has_type = true;
2647  break;
2648  case DW_TAG_base_type:
2649  context.has_type = true;
2650  break;
2651  case DW_TAG_formal_parameter:
2652  context.has_name = true;
2653  break;
2654  default:
2655  is_keyword = false;
2656  break;
2657  }
2658  }
2659 
2660  if (!is_keyword && context.is_const) {
2661  context.text.insert(0, "const ");
2662  }
2663 
2664  context.is_const = next_type_is_const;
2665 
2666  Dwarf_Die ref =
2667  get_referenced_die(fobj.dwarf_handle.get(), die, DW_AT_type, true);
2668  if (ref) {
2669  set_parameter_string(fobj, ref, context);
2670  dwarf_dealloc(fobj.dwarf_handle.get(), ref, DW_DLA_DIE);
2671  }
2672 
2673  if (!context.has_type && context.has_name) {
2674  context.text.insert(0, "void ");
2675  context.has_type = true;
2676  }
2677  }
2678 
2679  // Resolve the function return type and parameters
2680  static void set_function_parameters(std::string &function_name,
2681  std::vector<std::string> &ns,
2682  dwarf_fileobject &fobj, Dwarf_Die die) {
2683  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2684  Dwarf_Error error = DW_DLE_NE;
2685  Dwarf_Die current_die = 0;
2686  std::string parameters;
2687  bool has_spec = true;
2688  // Check if we have a spec DIE. If we do we use it as it contains
2689  // more information, like parameter names.
2690  Dwarf_Die spec_die = get_spec_die(fobj, die);
2691  if (!spec_die) {
2692  has_spec = false;
2693  spec_die = die;
2694  }
2695 
2696  std::vector<std::string>::const_iterator it = ns.begin();
2697  std::string ns_name;
2698  for (it = ns.begin(); it < ns.end(); ++it) {
2699  ns_name.append(*it).append("::");
2700  }
2701 
2702  if (!ns_name.empty()) {
2703  function_name.insert(0, ns_name);
2704  }
2705 
2706  // See if we have a function return type. It can be either on the
2707  // current die or in its spec one (usually true for inlined functions)
2708  std::string return_type =
2709  get_referenced_die_name(dwarf, die, DW_AT_type, true);
2710  if (return_type.empty()) {
2711  return_type = get_referenced_die_name(dwarf, spec_die, DW_AT_type, true);
2712  }
2713  if (!return_type.empty()) {
2714  return_type.append(" ");
2715  function_name.insert(0, return_type);
2716  }
2717 
2718  if (dwarf_child(spec_die, &current_die, &error) == DW_DLV_OK) {
2719  for (;;) {
2720  Dwarf_Die sibling_die = 0;
2721 
2722  Dwarf_Half tag_value;
2723  dwarf_tag(current_die, &tag_value, &error);
2724 
2725  if (tag_value == DW_TAG_formal_parameter) {
2726  // Ignore artificial (ie, compiler generated) parameters
2727  bool is_artificial = false;
2728  Dwarf_Attribute attr_mem;
2729  if (dwarf_attr(current_die, DW_AT_artificial, &attr_mem, &error) ==
2730  DW_DLV_OK) {
2731  Dwarf_Bool flag = 0;
2732  if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
2733  is_artificial = flag != 0;
2734  }
2735  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2736  }
2737 
2738  if (!is_artificial) {
2739  type_context_t context;
2740  set_parameter_string(fobj, current_die, context);
2741 
2742  if (parameters.empty()) {
2743  parameters.append("(");
2744  } else {
2745  parameters.append(", ");
2746  }
2747  parameters.append(context.text);
2748  }
2749  }
2750 
2751  int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
2752  if (result == DW_DLV_ERROR) {
2753  break;
2754  } else if (result == DW_DLV_NO_ENTRY) {
2755  break;
2756  }
2757 
2758  if (current_die != die) {
2759  dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2760  current_die = 0;
2761  }
2762 
2763  current_die = sibling_die;
2764  }
2765  }
2766  if (parameters.empty())
2767  parameters = "(";
2768  parameters.append(")");
2769 
2770  // If we got a spec DIE we need to deallocate it
2771  if (has_spec)
2772  dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
2773 
2774  function_name.append(parameters);
2775  }
2776 
2777  // defined here because in C++98, template function cannot take locally
2778  // defined types... grrr.
2779  struct inliners_search_cb {
2780  void operator()(Dwarf_Die die, std::vector<std::string> &ns) {
2781  Dwarf_Error error = DW_DLE_NE;
2782  Dwarf_Half tag_value;
2783  Dwarf_Attribute attr_mem;
2784  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2785 
2786  dwarf_tag(die, &tag_value, &error);
2787 
2788  switch (tag_value) {
2789  char *name;
2790  case DW_TAG_subprogram:
2791  if (!trace.source.function.empty())
2792  break;
2793  if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2794  trace.source.function = std::string(name);
2795  dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2796  } else {
2797  // We don't have a function name in this DIE.
2798  // Check if there is a referenced non-defining
2799  // declaration.
2800  trace.source.function =
2801  get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
2802  if (trace.source.function.empty()) {
2803  trace.source.function =
2804  get_referenced_die_name(dwarf, die, DW_AT_specification, true);
2805  }
2806  }
2807 
2808  // Append the function parameters, if available
2809  set_function_parameters(trace.source.function, ns, fobj, die);
2810 
2811  // If the object function name is empty, it's possible that
2812  // there is no dynamic symbol table (maybe the executable
2813  // was stripped or not built with -rdynamic). See if we have
2814  // a DWARF linkage name to use instead. We try both
2815  // linkage_name and MIPS_linkage_name because the MIPS tag
2816  // was the unofficial one until it was adopted in DWARF4.
2817  // Old gcc versions generate MIPS_linkage_name
2818  if (trace.object_function.empty()) {
2819  details::demangler demangler;
2820 
2821  if (dwarf_attr(die, DW_AT_linkage_name, &attr_mem, &error) !=
2822  DW_DLV_OK) {
2823  if (dwarf_attr(die, DW_AT_MIPS_linkage_name, &attr_mem, &error) !=
2824  DW_DLV_OK) {
2825  break;
2826  }
2827  }
2828 
2829  char *linkage;
2830  if (dwarf_formstring(attr_mem, &linkage, &error) == DW_DLV_OK) {
2831  trace.object_function = demangler.demangle(linkage);
2832  dwarf_dealloc(dwarf, linkage, DW_DLA_STRING);
2833  }
2834  dwarf_dealloc(dwarf, name, DW_DLA_ATTR);
2835  }
2836  break;
2837 
2838  case DW_TAG_inlined_subroutine:
2840 
2841  if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2842  sloc.function = std::string(name);
2843  dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2844  } else {
2845  // We don't have a name for this inlined DIE, it could
2846  // be that there is an abstract origin instead.
2847  // Get the DW_AT_abstract_origin value, which is a
2848  // reference to the source DIE and try to get its name
2849  sloc.function =
2850  get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
2851  }
2852 
2853  set_function_parameters(sloc.function, ns, fobj, die);
2854 
2855  std::string file = die_call_file(dwarf, die, cu_die);
2856  if (!file.empty())
2857  sloc.filename = file;
2858 
2859  Dwarf_Unsigned number = 0;
2860  if (dwarf_attr(die, DW_AT_call_line, &attr_mem, &error) == DW_DLV_OK) {
2861  if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
2862  sloc.line = number;
2863  }
2864  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2865  }
2866 
2867  if (dwarf_attr(die, DW_AT_call_column, &attr_mem, &error) ==
2868  DW_DLV_OK) {
2869  if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
2870  sloc.col = number;
2871  }
2872  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2873  }
2874 
2875  trace.inliners.push_back(sloc);
2876  break;
2877  };
2878  }
2879  ResolvedTrace &trace;
2880  dwarf_fileobject &fobj;
2881  Dwarf_Die cu_die;
2882  inliners_search_cb(ResolvedTrace &t, dwarf_fileobject &f, Dwarf_Die c)
2883  : trace(t), fobj(f), cu_die(c) {}
2884  };
2885 
2886  static Dwarf_Die find_fundie_by_pc(dwarf_fileobject &fobj,
2887  Dwarf_Die parent_die, Dwarf_Addr pc,
2888  Dwarf_Die result) {
2889  Dwarf_Die current_die = 0;
2890  Dwarf_Error error = DW_DLE_NE;
2891  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2892 
2893  if (dwarf_child(parent_die, &current_die, &error) != DW_DLV_OK) {
2894  return NULL;
2895  }
2896 
2897  for (;;) {
2898  Dwarf_Die sibling_die = 0;
2899  Dwarf_Half tag_value;
2900  dwarf_tag(current_die, &tag_value, &error);
2901 
2902  switch (tag_value) {
2903  case DW_TAG_subprogram:
2904  case DW_TAG_inlined_subroutine:
2905  if (die_has_pc(fobj, current_die, pc)) {
2906  return current_die;
2907  }
2908  };
2909  bool declaration = false;
2910  Dwarf_Attribute attr_mem;
2911  if (dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
2912  DW_DLV_OK) {
2913  Dwarf_Bool flag = 0;
2914  if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
2915  declaration = flag != 0;
2916  }
2917  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2918  }
2919 
2920  if (!declaration) {
2921  // let's be curious and look deeper in the tree, functions are
2922  // not necessarily at the first level, but might be nested
2923  // inside a namespace, structure, a function, an inlined
2924  // function etc.
2925  Dwarf_Die die_mem = 0;
2926  Dwarf_Die indie = find_fundie_by_pc(fobj, current_die, pc, die_mem);
2927  if (indie) {
2928  result = die_mem;
2929  return result;
2930  }
2931  }
2932 
2933  int res = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
2934  if (res == DW_DLV_ERROR) {
2935  return NULL;
2936  } else if (res == DW_DLV_NO_ENTRY) {
2937  break;
2938  }
2939 
2940  if (current_die != parent_die) {
2941  dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2942  current_die = 0;
2943  }
2944 
2945  current_die = sibling_die;
2946  }
2947  return NULL;
2948  }
2949 
2950  template <typename CB>
2951  static bool deep_first_search_by_pc(dwarf_fileobject &fobj,
2952  Dwarf_Die parent_die, Dwarf_Addr pc,
2953  std::vector<std::string> &ns, CB cb) {
2954  Dwarf_Die current_die = 0;
2955  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2956  Dwarf_Error error = DW_DLE_NE;
2957 
2958  if (dwarf_child(parent_die, &current_die, &error) != DW_DLV_OK) {
2959  return false;
2960  }
2961 
2962  bool branch_has_pc = false;
2963  bool has_namespace = false;
2964  for (;;) {
2965  Dwarf_Die sibling_die = 0;
2966 
2967  Dwarf_Half tag;
2968  if (dwarf_tag(current_die, &tag, &error) == DW_DLV_OK) {
2969  if (tag == DW_TAG_namespace || tag == DW_TAG_class_type) {
2970  char *ns_name = NULL;
2971  if (dwarf_diename(current_die, &ns_name, &error) == DW_DLV_OK) {
2972  if (ns_name) {
2973  ns.push_back(std::string(ns_name));
2974  } else {
2975  ns.push_back("<unknown>");
2976  }
2977  dwarf_dealloc(dwarf, ns_name, DW_DLA_STRING);
2978  } else {
2979  ns.push_back("<unknown>");
2980  }
2981  has_namespace = true;
2982  }
2983  }
2984 
2985  bool declaration = false;
2986  Dwarf_Attribute attr_mem;
2987  if (tag != DW_TAG_class_type &&
2988  dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
2989  DW_DLV_OK) {
2990  Dwarf_Bool flag = 0;
2991  if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
2992  declaration = flag != 0;
2993  }
2994  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2995  }
2996 
2997  if (!declaration) {
2998  // let's be curious and look deeper in the tree, function are
2999  // not necessarily at the first level, but might be nested
3000  // inside a namespace, structure, a function, an inlined
3001  // function etc.
3002  branch_has_pc = deep_first_search_by_pc(fobj, current_die, pc, ns, cb);
3003  }
3004 
3005  if (!branch_has_pc) {
3006  branch_has_pc = die_has_pc(fobj, current_die, pc);
3007  }
3008 
3009  if (branch_has_pc) {
3010  cb(current_die, ns);
3011  }
3012 
3013  int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
3014  if (result == DW_DLV_ERROR) {
3015  return false;
3016  } else if (result == DW_DLV_NO_ENTRY) {
3017  break;
3018  }
3019 
3020  if (current_die != parent_die) {
3021  dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
3022  current_die = 0;
3023  }
3024 
3025  if (has_namespace) {
3026  has_namespace = false;
3027  ns.pop_back();
3028  }
3029  current_die = sibling_die;
3030  }
3031 
3032  if (has_namespace) {
3033  ns.pop_back();
3034  }
3035  return branch_has_pc;
3036  }
3037 
3038  static std::string die_call_file(Dwarf_Debug dwarf, Dwarf_Die die,
3039  Dwarf_Die cu_die) {
3040  Dwarf_Attribute attr_mem;
3041  Dwarf_Error error = DW_DLE_NE;
3042  Dwarf_Signed file_index;
3043 
3044  std::string file;
3045 
3046  if (dwarf_attr(die, DW_AT_call_file, &attr_mem, &error) == DW_DLV_OK) {
3047  if (dwarf_formsdata(attr_mem, &file_index, &error) != DW_DLV_OK) {
3048  file_index = 0;
3049  }
3050  dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
3051 
3052  if (file_index == 0) {
3053  return file;
3054  }
3055 
3056  char **srcfiles = 0;
3057  Dwarf_Signed file_count = 0;
3058  if (dwarf_srcfiles(cu_die, &srcfiles, &file_count, &error) == DW_DLV_OK) {
3059  if (file_index <= file_count)
3060  file = std::string(srcfiles[file_index - 1]);
3061 
3062  // Deallocate all strings!
3063  for (int i = 0; i < file_count; ++i) {
3064  dwarf_dealloc(dwarf, srcfiles[i], DW_DLA_STRING);
3065  }
3066  dwarf_dealloc(dwarf, srcfiles, DW_DLA_LIST);
3067  }
3068  }
3069  return file;
3070  }
3071 
3072  Dwarf_Die find_die(dwarf_fileobject &fobj, Dwarf_Addr addr) {
3073  // Let's get to work! First see if we have a debug_aranges section so
3074  // we can speed up the search
3075 
3076  Dwarf_Debug dwarf = fobj.dwarf_handle.get();
3077  Dwarf_Error error = DW_DLE_NE;
3078  Dwarf_Arange *aranges;
3079  Dwarf_Signed arange_count;
3080 
3081  Dwarf_Die returnDie;
3082  bool found = false;
3083  if (dwarf_get_aranges(dwarf, &aranges, &arange_count, &error) !=
3084  DW_DLV_OK) {
3085  aranges = NULL;
3086  }
3087 
3088  if (aranges) {
3089  // We have aranges. Get the one where our address is.
3090  Dwarf_Arange arange;
3091  if (dwarf_get_arange(aranges, arange_count, addr, &arange, &error) ==
3092  DW_DLV_OK) {
3093 
3094  // We found our address. Get the compilation-unit DIE offset
3095  // represented by the given address range.
3096  Dwarf_Off cu_die_offset;
3097  if (dwarf_get_cu_die_offset(arange, &cu_die_offset, &error) ==
3098  DW_DLV_OK) {
3099  // Get the DIE at the offset returned by the aranges search.
3100  // We set is_info to 1 to specify that the offset is from
3101  // the .debug_info section (and not .debug_types)
3102  int dwarf_result =
3103  dwarf_offdie_b(dwarf, cu_die_offset, 1, &returnDie, &error);
3104 
3105  found = dwarf_result == DW_DLV_OK;
3106  }
3107  dwarf_dealloc(dwarf, arange, DW_DLA_ARANGE);
3108  }
3109  }
3110 
3111  if (found)
3112  return returnDie; // The caller is responsible for freeing the die
3113 
3114  // The search for aranges failed. Try to find our address by scanning
3115  // all compilation units.
3116  Dwarf_Unsigned next_cu_header;
3117  Dwarf_Half tag = 0;
3118  returnDie = 0;
3119 
3120  while (!found &&
3121  dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3122  &next_cu_header, 0, &error) == DW_DLV_OK) {
3123 
3124  if (returnDie)
3125  dwarf_dealloc(dwarf, returnDie, DW_DLA_DIE);
3126 
3127  if (dwarf_siblingof(dwarf, 0, &returnDie, &error) == DW_DLV_OK) {
3128  if ((dwarf_tag(returnDie, &tag, &error) == DW_DLV_OK) &&
3129  tag == DW_TAG_compile_unit) {
3130  if (die_has_pc(fobj, returnDie, addr)) {
3131  found = true;
3132  }
3133  }
3134  }
3135  }
3136 
3137  if (found) {
3138  while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3139  &next_cu_header, 0, &error) == DW_DLV_OK) {
3140  // Reset the cu header state. Libdwarf's next_cu_header API
3141  // keeps its own iterator per Dwarf_Debug that can't be reset.
3142  // We need to keep fetching elements until the end.
3143  }
3144  }
3145 
3146  if (found)
3147  return returnDie;
3148 
3149  // We couldn't find any compilation units with ranges or a high/low pc.
3150  // Try again by looking at all DIEs in all compilation units.
3151  Dwarf_Die cudie;
3152  while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3153  &next_cu_header, 0, &error) == DW_DLV_OK) {
3154  if (dwarf_siblingof(dwarf, 0, &cudie, &error) == DW_DLV_OK) {
3155  Dwarf_Die die_mem = 0;
3156  Dwarf_Die resultDie = find_fundie_by_pc(fobj, cudie, addr, die_mem);
3157 
3158  if (resultDie) {
3159  found = true;
3160  break;
3161  }
3162  }
3163  }
3164 
3165  if (found) {
3166  while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3167  &next_cu_header, 0, &error) == DW_DLV_OK) {
3168  // Reset the cu header state. Libdwarf's next_cu_header API
3169  // keeps its own iterator per Dwarf_Debug that can't be reset.
3170  // We need to keep fetching elements until the end.
3171  }
3172  }
3173 
3174  if (found)
3175  return cudie;
3176 
3177  // We failed.
3178  return NULL;
3179  }
3180 };
3181 #endif // BACKWARD_HAS_DWARF == 1
3182 
3183 template <>
3184 class TraceResolverImpl<system_tag::linux_tag>
3185  : public TraceResolverLinuxImpl<trace_resolver_tag::current> {};
3186 
3187 #endif // BACKWARD_SYSTEM_LINUX
3188 
3189 #ifdef BACKWARD_SYSTEM_DARWIN
3190 
3191 template <typename STACKTRACE_TAG> class TraceResolverDarwinImpl;
3192 
3193 template <>
3194 class TraceResolverDarwinImpl<trace_resolver_tag::backtrace_symbol>
3195  : public TraceResolverImplBase {
3196 public:
3197  template <class ST> void load_stacktrace(ST &st) {
3198  using namespace details;
3199  if (st.size() == 0) {
3200  return;
3201  }
3202  _symbols.reset(backtrace_symbols(st.begin(), st.size()));
3203  }
3204 
3206  // parse:
3207  // <n> <file> <addr> <mangled-name> + <offset>
3208  char *filename = _symbols[trace.idx];
3209 
3210  // skip "<n> "
3211  while (*filename && *filename != ' ')
3212  filename++;
3213  while (*filename == ' ')
3214  filename++;
3215 
3216  // find start of <mangled-name> from end (<file> may contain a space)
3217  char *p = filename + strlen(filename) - 1;
3218  // skip to start of " + <offset>"
3219  while (p > filename && *p != ' ')
3220  p--;
3221  while (p > filename && *p == ' ')
3222  p--;
3223  while (p > filename && *p != ' ')
3224  p--;
3225  while (p > filename && *p == ' ')
3226  p--;
3227  char *funcname_end = p + 1;
3228 
3229  // skip to start of "<manged-name>"
3230  while (p > filename && *p != ' ')
3231  p--;
3232  char *funcname = p + 1;
3233 
3234  // skip to start of " <addr> "
3235  while (p > filename && *p == ' ')
3236  p--;
3237  while (p > filename && *p != ' ')
3238  p--;
3239  while (p > filename && *p == ' ')
3240  p--;
3241 
3242  // skip "<file>", handling the case where it contains a
3243  char *filename_end = p + 1;
3244  if (p == filename) {
3245  // something went wrong, give up
3246  filename_end = filename + strlen(filename);
3247  funcname = filename_end;
3248  }
3249  trace.object_filename.assign(
3250  filename, filename_end); // ok even if filename_end is the ending \0
3251  // (then we assign entire string)
3252 
3253  if (*funcname) { // if it's not end of string
3254  *funcname_end = '\0';
3255 
3256  trace.object_function = this->demangle(funcname);
3257  trace.object_function += " ";
3258  trace.object_function += (funcname_end + 1);
3259  trace.source.function = trace.object_function; // we cannot do better.
3260  }
3261  return trace;
3262  }
3263 
3264 private:
3265  details::handle<char **> _symbols;
3266 };
3267 
3268 template <>
3269 class TraceResolverImpl<system_tag::darwin_tag>
3270  : public TraceResolverDarwinImpl<trace_resolver_tag::current> {};
3271 
3272 #endif // BACKWARD_SYSTEM_DARWIN
3273 
3274 #ifdef BACKWARD_SYSTEM_WINDOWS
3275 
3276 // Load all symbol info
3277 // Based on:
3278 // https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
3279 
3280 struct module_data {
3281  std::string image_name;
3282  std::string module_name;
3283  void *base_address;
3284  DWORD load_size;
3285 };
3286 
3287 class get_mod_info {
3288  HANDLE process;
3289  static const int buffer_length = 4096;
3290 
3291 public:
3292  get_mod_info(HANDLE h) : process(h) {}
3293 
3294  module_data operator()(HMODULE module) {
3295  module_data ret;
3296  char temp[buffer_length];
3297  MODULEINFO mi;
3298 
3299  GetModuleInformation(process, module, &mi, sizeof(mi));
3300  ret.base_address = mi.lpBaseOfDll;
3301  ret.load_size = mi.SizeOfImage;
3302 
3303  GetModuleFileNameEx(process, module, temp, sizeof(temp));
3304  ret.image_name = temp;
3305  GetModuleBaseName(process, module, temp, sizeof(temp));
3306  ret.module_name = temp;
3307  std::vector<char> img(ret.image_name.begin(), ret.image_name.end());
3308  std::vector<char> mod(ret.module_name.begin(), ret.module_name.end());
3309  SymLoadModule64(process, 0, &img[0], &mod[0], (DWORD64)ret.base_address,
3310  ret.load_size);
3311  return ret;
3312  }
3313 };
3314 
3315 template <> class TraceResolverImpl<system_tag::windows_tag> {
3316 public:
3317  TraceResolverImpl() {
3318 
3319  HANDLE process = GetCurrentProcess();
3320 
3321  std::vector<module_data> modules;
3322  DWORD cbNeeded;
3323  std::vector<HMODULE> module_handles(1);
3324  SymInitialize(process, NULL, false);
3325  DWORD symOptions = SymGetOptions();
3326  symOptions |= SYMOPT_LOAD_LINES | SYMOPT_UNDNAME;
3327  SymSetOptions(symOptions);
3328  EnumProcessModules(process, &module_handles[0],
3329  module_handles.size() * sizeof(HMODULE), &cbNeeded);
3330  module_handles.resize(cbNeeded / sizeof(HMODULE));
3331  EnumProcessModules(process, &module_handles[0],
3332  module_handles.size() * sizeof(HMODULE), &cbNeeded);
3333  std::transform(module_handles.begin(), module_handles.end(),
3334  std::back_inserter(modules), get_mod_info(process));
3335  void *base = modules[0].base_address;
3336  IMAGE_NT_HEADERS *h = ImageNtHeader(base);
3337  image_type = h->FileHeader.Machine;
3338  }
3339 
3340  template <class ST> void load_stacktrace(ST &) {}
3341 
3342  static const int max_sym_len = 255;
3343  struct symbol_t {
3344  SYMBOL_INFO sym;
3345  char buffer[max_sym_len];
3346  } sym;
3347 
3348  DWORD64 displacement;
3349 
3351  HANDLE process = GetCurrentProcess();
3352 
3353  char name[256];
3354 
3355  memset(&sym, sizeof(sym), 0);
3356  sym.sym.SizeOfStruct = sizeof(SYMBOL_INFO);
3357  sym.sym.MaxNameLen = max_sym_len;
3358 
3359  if (!SymFromAddr(process, (ULONG64)t.addr, &displacement, &sym.sym)) {
3360  // TODO: error handling everywhere
3361  LPTSTR lpMsgBuf;
3362  DWORD dw = GetLastError();
3363 
3364  FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
3365  FORMAT_MESSAGE_FROM_SYSTEM |
3366  FORMAT_MESSAGE_IGNORE_INSERTS,
3367  NULL, dw, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
3368  (LPTSTR)&lpMsgBuf, 0, NULL);
3369 
3370  printf(lpMsgBuf);
3371 
3372  // abort();
3373  }
3374  UnDecorateSymbolName(sym.sym.Name, (PSTR)name, 256, UNDNAME_COMPLETE);
3375 
3376  DWORD offset = 0;
3377  IMAGEHLP_LINE line;
3378  if (SymGetLineFromAddr(process, (ULONG64)t.addr, &offset, &line)) {
3379  t.object_filename = line.FileName;
3380  t.source.filename = line.FileName;
3381  t.source.line = line.LineNumber;
3382  t.source.col = offset;
3383  }
3384 
3385  t.source.function = name;
3386  t.object_filename = "";
3387  t.object_function = name;
3388 
3389  return t;
3390  }
3391 
3392  DWORD machine_type() const { return image_type; }
3393 
3394 private:
3395  DWORD image_type;
3396 };
3397 
3398 #endif
3399 
3400 class TraceResolver : public TraceResolverImpl<system_tag::current_tag> {};
3401 
3402 /*************** CODE SNIPPET ***************/
3403 
3404 class SourceFile {
3405 public:
3406  typedef std::vector<std::pair<unsigned, std::string> > lines_t;
3407 
3409  SourceFile(const std::string &path) {
3410  // 1. If BACKWARD_CXX_SOURCE_PREFIXES is set then assume it contains
3411  // a colon-separated list of path prefixes. Try prepending each
3412  // to the given path until a valid file is found.
3413  const std::vector<std::string>& prefixes = get_paths_from_env_variable();
3414  for (size_t i = 0; i < prefixes.size(); ++i) {
3415  // Double slashes (//) should not be a problem.
3416  std::string new_path = prefixes[i] + '/' + path;
3417  _file.reset(new std::ifstream(new_path.c_str()));
3418  if (is_open()) break;
3419  }
3420  // 2. If no valid file found then fallback to opening the path as-is.
3421  if (!_file || !is_open()) {
3422  _file.reset(new std::ifstream(path.c_str()));
3423  }
3424  }
3425  bool is_open() const { return _file->is_open(); }
3426 
3427  lines_t &get_lines(unsigned line_start, unsigned line_count, lines_t &lines) {
3428  using namespace std;
3429  // This function make uses of the dumbest algo ever:
3430  // 1) seek(0)
3431  // 2) read lines one by one and discard until line_start
3432  // 3) read line one by one until line_start + line_count
3433  //
3434  // If you are getting snippets many time from the same file, it is
3435  // somewhat a waste of CPU, feel free to benchmark and propose a
3436  // better solution ;)
3437 
3438  _file->clear();
3439  _file->seekg(0);
3440  string line;
3441  unsigned line_idx;
3442 
3443  for (line_idx = 1; line_idx < line_start; ++line_idx) {
3444  std::getline(*_file, line);
3445  if (!*_file) {
3446  return lines;
3447  }
3448  }
3449 
3450  // think of it like a lambda in C++98 ;)
3451  // but look, I will reuse it two times!
3452  // What a good boy am I.
3453  struct isspace {
3454  bool operator()(char c) { return std::isspace(c); }
3455  };
3456 
3457  bool started = false;
3458  for (; line_idx < line_start + line_count; ++line_idx) {
3459  getline(*_file, line);
3460  if (!*_file) {
3461  return lines;
3462  }
3463  if (!started) {
3464  if (std::find_if(line.begin(), line.end(), not_isspace()) == line.end())
3465  continue;
3466  started = true;
3467  }
3468  lines.push_back(make_pair(line_idx, line));
3469  }
3470 
3471  lines.erase(
3472  std::find_if(lines.rbegin(), lines.rend(), not_isempty()).base(),
3473  lines.end());
3474  return lines;
3475  }
3476 
3477  lines_t get_lines(unsigned line_start, unsigned line_count) {
3478  lines_t lines;
3479  return get_lines(line_start, line_count, lines);
3480  }
3481 
3482  // there is no find_if_not in C++98, lets do something crappy to
3483  // workaround.
3484  struct not_isspace {
3485  bool operator()(char c) { return !std::isspace(c); }
3486  };
3487  // and define this one here because C++98 is not happy with local defined
3488  // struct passed to template functions, fuuuu.
3489  struct not_isempty {
3490  bool operator()(const lines_t::value_type &p) {
3491  return !(std::find_if(p.second.begin(), p.second.end(), not_isspace()) ==
3492  p.second.end());
3493  }
3494  };
3495 
3496  void swap(SourceFile &b) { _file.swap(b._file); }
3497 
3498 #ifdef BACKWARD_ATLEAST_CXX11
3499  SourceFile(SourceFile &&from) : _file(nullptr) { swap(from); }
3500  SourceFile &operator=(SourceFile &&from) {
3501  swap(from);
3502  return *this;
3503  }
3504 #else
3505  explicit SourceFile(const SourceFile &from) {
3506  // some sort of poor man's move semantic.
3507  swap(const_cast<SourceFile &>(from));
3508  }
3510  // some sort of poor man's move semantic.
3511  swap(const_cast<SourceFile &>(from));
3512  return *this;
3513  }
3514 #endif
3515 
3516 private:
3519 
3520  std::vector<std::string> get_paths_from_env_variable_impl() {
3521  std::vector<std::string> paths;
3522  const char* prefixes_str = std::getenv("BACKWARD_CXX_SOURCE_PREFIXES");
3523  if (prefixes_str && prefixes_str[0]) {
3524  paths = details::split_source_prefixes(prefixes_str);
3525  }
3526  return paths;
3527  }
3528 
3529  const std::vector<std::string>& get_paths_from_env_variable() {
3530  static std::vector<std::string> paths = get_paths_from_env_variable_impl();
3531  return paths;
3532  }
3533 
3534 #ifdef BACKWARD_ATLEAST_CXX11
3535  SourceFile(const SourceFile &) = delete;
3536  SourceFile &operator=(const SourceFile &) = delete;
3537 #endif
3538 };
3539 
3541 public:
3543 
3544  lines_t get_snippet(const std::string &filename, unsigned line_start,
3545  unsigned context_size) {
3546 
3547  SourceFile &src_file = get_src_file(filename);
3548  unsigned start = line_start - context_size / 2;
3549  return src_file.get_lines(start, context_size);
3550  }
3551 
3552  lines_t get_combined_snippet(const std::string &filename_a, unsigned line_a,
3553  const std::string &filename_b, unsigned line_b,
3554  unsigned context_size) {
3555  SourceFile &src_file_a = get_src_file(filename_a);
3556  SourceFile &src_file_b = get_src_file(filename_b);
3557 
3558  lines_t lines =
3559  src_file_a.get_lines(line_a - context_size / 4, context_size / 2);
3560  src_file_b.get_lines(line_b - context_size / 4, context_size / 2, lines);
3561  return lines;
3562  }
3563 
3564  lines_t get_coalesced_snippet(const std::string &filename, unsigned line_a,
3565  unsigned line_b, unsigned context_size) {
3566  SourceFile &src_file = get_src_file(filename);
3567 
3568  using std::max;
3569  using std::min;
3570  unsigned a = min(line_a, line_b);
3571  unsigned b = max(line_a, line_b);
3572 
3573  if ((b - a) < (context_size / 3)) {
3574  return src_file.get_lines((a + b - context_size + 1) / 2, context_size);
3575  }
3576 
3577  lines_t lines = src_file.get_lines(a - context_size / 4, context_size / 2);
3578  src_file.get_lines(b - context_size / 4, context_size / 2, lines);
3579  return lines;
3580  }
3581 
3582 private:
3584  src_files_t _src_files;
3585 
3586  SourceFile &get_src_file(const std::string &filename) {
3587  src_files_t::iterator it = _src_files.find(filename);
3588  if (it != _src_files.end()) {
3589  return it->second;
3590  }
3591  SourceFile &new_src_file = _src_files[filename];
3592  new_src_file = SourceFile(filename);
3593  return new_src_file;
3594  }
3595 };
3596 
3597 /*************** PRINTER ***************/
3598 
3599 namespace ColorMode {
3601 }
3602 
3603 class cfile_streambuf : public std::streambuf {
3604 public:
3605  cfile_streambuf(FILE *_sink) : sink(_sink) {}
3606  int_type underflow() override { return traits_type::eof(); }
3607  int_type overflow(int_type ch) override {
3608  if (traits_type::not_eof(ch) && fwrite(&ch, sizeof ch, 1, sink) == 1) {
3609  return ch;
3610  }
3611  return traits_type::eof();
3612  }
3613 
3614  std::streamsize xsputn(const char_type *s, std::streamsize count) override {
3615  return static_cast<std::streamsize>(
3616  fwrite(s, sizeof *s, static_cast<size_t>(count), sink));
3617  }
3618 
3619 #ifdef BACKWARD_ATLEAST_CXX11
3620 public:
3621  cfile_streambuf(const cfile_streambuf &) = delete;
3622  cfile_streambuf &operator=(const cfile_streambuf &) = delete;
3623 #else
3624 private:
3626  cfile_streambuf &operator=(const cfile_streambuf &);
3627 #endif
3628 
3629 private:
3630  FILE *sink;
3631  std::vector<char> buffer;
3632 };
3633 
3634 #ifdef BACKWARD_SYSTEM_LINUX
3635 
3636 namespace Color {
3637 enum type { yellow = 33, purple = 35, reset = 39 };
3638 } // namespace Color
3639 
3640 class Colorize {
3641 public:
3642  Colorize(std::ostream &os) : _os(os), _reset(false), _enabled(false) {}
3643 
3644  void activate(ColorMode::type mode) { _enabled = mode == ColorMode::always; }
3645 
3646  void activate(ColorMode::type mode, FILE *fp) { activate(mode, fileno(fp)); }
3647 
3648  void set_color(Color::type ccode) {
3649  if (!_enabled)
3650  return;
3651 
3652  // I assume that the terminal can handle basic colors. Seriously I
3653  // don't want to deal with all the termcap shit.
3654  _os << "\033[" << static_cast<int>(ccode) << "m";
3655  _reset = (ccode != Color::reset);
3656  }
3657 
3658  ~Colorize() {
3659  if (_reset) {
3660  set_color(Color::reset);
3661  }
3662  }
3663 
3664 private:
3665  void activate(ColorMode::type mode, int fd) {
3666  activate(mode == ColorMode::automatic && isatty(fd) ? ColorMode::always
3667  : mode);
3668  }
3669 
3670  std::ostream &_os;
3671  bool _reset;
3672  bool _enabled;
3673 };
3674 
3675 #else // ndef BACKWARD_SYSTEM_LINUX
3676 
3677 namespace Color {
3678 enum type { yellow = 0, purple = 0, reset = 0 };
3679 } // namespace Color
3680 
3681 class Colorize {
3682 public:
3683  Colorize(std::ostream &) {}
3685  void activate(ColorMode::type, FILE *) {}
3687 };
3688 
3689 #endif // BACKWARD_SYSTEM_LINUX
3690 
3691 class Printer {
3692 public:
3693  bool snippet;
3695  bool address;
3696  bool object;
3699 
3701  : snippet(true), color_mode(ColorMode::automatic), address(false),
3702  object(false), inliner_context_size(5), trace_context_size(7) {}
3703 
3704  template <typename ST> FILE *print(ST &st, FILE *fp = stderr) {
3705  cfile_streambuf obuf(fp);
3706  std::ostream os(&obuf);
3707  Colorize colorize(os);
3708  colorize.activate(color_mode, fp);
3709  print_stacktrace(st, os, colorize);
3710  return fp;
3711  }
3712 
3713  template <typename ST> std::ostream &print(ST &st, std::ostream &os) {
3714  Colorize colorize(os);
3715  colorize.activate(color_mode);
3716  print_stacktrace(st, os, colorize);
3717  return os;
3718  }
3719 
3720  template <typename IT>
3721  FILE *print(IT begin, IT end, FILE *fp = stderr, size_t thread_id = 0) {
3722  cfile_streambuf obuf(fp);
3723  std::ostream os(&obuf);
3724  Colorize colorize(os);
3725  colorize.activate(color_mode, fp);
3726  print_stacktrace(begin, end, os, thread_id, colorize);
3727  return fp;
3728  }
3729 
3730  template <typename IT>
3731  std::ostream &print(IT begin, IT end, std::ostream &os,
3732  size_t thread_id = 0) {
3733  Colorize colorize(os);
3734  colorize.activate(color_mode);
3735  print_stacktrace(begin, end, os, thread_id, colorize);
3736  return os;
3737  }
3738 
3739  TraceResolver const &resolver() const { return _resolver; }
3740 
3741 private:
3744 
3745  template <typename ST>
3746  void print_stacktrace(ST &st, std::ostream &os, Colorize &colorize) {
3747  print_header(os, st.thread_id());
3748  _resolver.load_stacktrace(st);
3749  for (size_t trace_idx = st.size(); trace_idx > 0; --trace_idx) {
3750  print_trace(os, _resolver.resolve(st[trace_idx - 1]), colorize);
3751  }
3752  }
3753 
3754  template <typename IT>
3755  void print_stacktrace(IT begin, IT end, std::ostream &os, size_t thread_id,
3756  Colorize &colorize) {
3757  print_header(os, thread_id);
3758  for (; begin != end; ++begin) {
3759  print_trace(os, *begin, colorize);
3760  }
3761  }
3762 
3763  void print_header(std::ostream &os, size_t thread_id) {
3764  os << "Stack trace (most recent call last)";
3765  if (thread_id) {
3766  os << " in thread " << thread_id;
3767  }
3768  os << ":\n";
3769  }
3770 
3771  void print_trace(std::ostream &os, const ResolvedTrace &trace,
3772  Colorize &colorize) {
3773  os << "#" << std::left << std::setw(2) << trace.idx << std::right;
3774  bool already_indented = true;
3775 
3776  if (!trace.source.filename.size() || object) {
3777  os << " Object \"" << trace.object_filename << "\", at " << trace.addr
3778  << ", in " << trace.object_function << "\n";
3779  already_indented = false;
3780  }
3781 
3782  for (size_t inliner_idx = trace.inliners.size(); inliner_idx > 0;
3783  --inliner_idx) {
3784  if (!already_indented) {
3785  os << " ";
3786  }
3787  const ResolvedTrace::SourceLoc &inliner_loc =
3788  trace.inliners[inliner_idx - 1];
3789  print_source_loc(os, " | ", inliner_loc);
3790  if (snippet) {
3791  print_snippet(os, " | ", inliner_loc, colorize, Color::purple,
3792  inliner_context_size);
3793  }
3794  already_indented = false;
3795  }
3796 
3797  if (trace.source.filename.size()) {
3798  if (!already_indented) {
3799  os << " ";
3800  }
3801  print_source_loc(os, " ", trace.source, trace.addr);
3802  if (snippet) {
3803  print_snippet(os, " ", trace.source, colorize, Color::yellow,
3804  trace_context_size);
3805  }
3806  }
3807  }
3808 
3809  void print_snippet(std::ostream &os, const char *indent,
3810  const ResolvedTrace::SourceLoc &source_loc,
3811  Colorize &colorize, Color::type color_code,
3812  int context_size) {
3813  using namespace std;
3814  typedef SnippetFactory::lines_t lines_t;
3815 
3816  lines_t lines = _snippets.get_snippet(source_loc.filename, source_loc.line,
3817  static_cast<unsigned>(context_size));
3818 
3819  for (lines_t::const_iterator it = lines.begin(); it != lines.end(); ++it) {
3820  if (it->first == source_loc.line) {
3821  colorize.set_color(color_code);
3822  os << indent << ">";
3823  } else {
3824  os << indent << " ";
3825  }
3826  os << std::setw(4) << it->first << ": " << it->second << "\n";
3827  if (it->first == source_loc.line) {
3828  colorize.set_color(Color::reset);
3829  }
3830  }
3831  }
3832 
3833  void print_source_loc(std::ostream &os, const char *indent,
3834  const ResolvedTrace::SourceLoc &source_loc,
3835  void *addr = nullptr) {
3836  os << indent << "Source \"" << source_loc.filename << "\", line "
3837  << source_loc.line << ", in " << source_loc.function;
3838 
3839  if (address && addr != nullptr) {
3840  os << " [" << addr << "]";
3841  }
3842  os << "\n";
3843  }
3844 };
3845 
3846 /*************** SIGNALS HANDLING ***************/
3847 
3848 #if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
3849 
3850 class SignalHandling {
3851 public:
3852  static std::vector<int> make_default_signals() {
3853  const int posix_signals[] = {
3854  // Signals for which the default action is "Core".
3855  SIGABRT, // Abort signal from abort(3)
3856  SIGBUS, // Bus error (bad memory access)
3857  SIGFPE, // Floating point exception
3858  SIGILL, // Illegal Instruction
3859  SIGIOT, // IOT trap. A synonym for SIGABRT
3860  SIGQUIT, // Quit from keyboard
3861  SIGSEGV, // Invalid memory reference
3862  SIGSYS, // Bad argument to routine (SVr4)
3863  SIGTRAP, // Trace/breakpoint trap
3864  SIGXCPU, // CPU time limit exceeded (4.2BSD)
3865  SIGXFSZ, // File size limit exceeded (4.2BSD)
3866 #if defined(BACKWARD_SYSTEM_DARWIN)
3867  SIGEMT, // emulation instruction executed
3868 #endif
3869  };
3870  return std::vector<int>(posix_signals,
3871  posix_signals +
3872  sizeof posix_signals / sizeof posix_signals[0]);
3873  }
3874 
3875  SignalHandling(const std::vector<int> &posix_signals = make_default_signals())
3876  : _loaded(false) {
3877  bool success = true;
3878 
3879  const size_t stack_size = 1024 * 1024 * 8;
3880  _stack_content.reset(static_cast<char *>(malloc(stack_size)));
3881  if (_stack_content) {
3882  stack_t ss;
3883  ss.ss_sp = _stack_content.get();
3884  ss.ss_size = stack_size;
3885  ss.ss_flags = 0;
3886  if (sigaltstack(&ss, nullptr) < 0) {
3887  success = false;
3888  }
3889  } else {
3890  success = false;
3891  }
3892 
3893  for (size_t i = 0; i < posix_signals.size(); ++i) {
3894  struct sigaction action;
3895  memset(&action, 0, sizeof action);
3896  action.sa_flags =
3897  static_cast<int>(SA_SIGINFO | SA_ONSTACK | SA_NODEFER | SA_RESETHAND);
3898  sigfillset(&action.sa_mask);
3899  sigdelset(&action.sa_mask, posix_signals[i]);
3900 #if defined(__clang__)
3901 #pragma clang diagnostic push
3902 #pragma clang diagnostic ignored "-Wdisabled-macro-expansion"
3903 #endif
3904  action.sa_sigaction = &sig_handler;
3905 #if defined(__clang__)
3906 #pragma clang diagnostic pop
3907 #endif
3908 
3909  int r = sigaction(posix_signals[i], &action, nullptr);
3910  if (r < 0)
3911  success = false;
3912  }
3913 
3914  _loaded = success;
3915  }
3916 
3917  bool loaded() const { return _loaded; }
3918 
3919  static void handleSignal(int, siginfo_t *info, void *_ctx) {
3920  ucontext_t *uctx = static_cast<ucontext_t *>(_ctx);
3921 
3922  StackTrace st;
3923  void *error_addr = nullptr;
3924 #ifdef REG_RIP // x86_64
3925  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_RIP]);
3926 #elif defined(REG_EIP) // x86_32
3927  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_EIP]);
3928 #elif defined(__arm__)
3929  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.arm_pc);
3930 #elif defined(__aarch64__)
3931  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.pc);
3932 #elif defined(__mips__)
3933  error_addr = reinterpret_cast<void *>(reinterpret_cast<struct sigcontext*>(&uctx->uc_mcontext)->sc_pc);
3934 #elif defined(__ppc__) || defined(__powerpc) || defined(__powerpc__) || \
3935  defined(__POWERPC__)
3936  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.regs->nip);
3937 #elif defined(__s390x__)
3938  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.psw.addr);
3939 #elif defined(__APPLE__) && defined(__x86_64__)
3940  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__rip);
3941 #elif defined(__APPLE__)
3942  error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__eip);
3943 #else
3944 #warning ":/ sorry, ain't know no nothing none not of your architecture!"
3945 #endif
3946  if (error_addr) {
3947  st.load_from(error_addr, 32);
3948  } else {
3949  st.load_here(32);
3950  }
3951 
3952  Printer printer;
3953  printer.address = true;
3954  printer.print(st, stderr);
3955 
3956 #if _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
3957  psiginfo(info, nullptr);
3958 #else
3959  (void)info;
3960 #endif
3961  }
3962 
3963 private:
3964  details::handle<char *> _stack_content;
3965  bool _loaded;
3966 
3967 #ifdef __GNUC__
3968  __attribute__((noreturn))
3969 #endif
3970  static void
3971  sig_handler(int signo, siginfo_t *info, void *_ctx) {
3972  handleSignal(signo, info, _ctx);
3973 
3974  // try to forward the signal.
3975  raise(info->si_signo);
3976 
3977  // terminate the process immediately.
3978  puts("watf? exit");
3979  _exit(EXIT_FAILURE);
3980  }
3981 };
3982 
3983 #endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
3984 
3985 #ifdef BACKWARD_SYSTEM_WINDOWS
3986 
3987 class SignalHandling {
3988 public:
3989  SignalHandling(const std::vector<int> & = std::vector<int>())
3990  : reporter_thread_([]() {
3991  /* We handle crashes in a utility thread:
3992  backward structures and some Windows functions called here
3993  need stack space, which we do not have when we encounter a
3994  stack overflow.
3995  To support reporting stack traces during a stack overflow,
3996  we create a utility thread at startup, which waits until a
3997  crash happens or the program exits normally. */
3998 
3999  {
4000  std::unique_lock<std::mutex> lk(mtx());
4001  cv().wait(lk, [] { return crashed() != crash_status::running; });
4002  }
4003  if (crashed() == crash_status::crashed) {
4004  handle_stacktrace(skip_recs());
4005  }
4006  {
4007  std::unique_lock<std::mutex> lk(mtx());
4008  crashed() = crash_status::ending;
4009  }
4010  cv().notify_one();
4011  }) {
4012  SetUnhandledExceptionFilter(crash_handler);
4013 
4014  signal(SIGABRT, signal_handler);
4015  _set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT);
4016 
4017  set_terminate(&terminator);
4018  set_unexpected(&terminator);
4019  _set_purecall_handler(&terminator);
4020  _set_invalid_parameter_handler(&invalid_parameter_handler);
4021  }
4022  bool loaded() const { return true; }
4023 
4024  ~SignalHandling() {
4025  {
4026  std::unique_lock<std::mutex> lk(mtx());
4027  crashed() = crash_status::normal_exit;
4028  }
4029 
4030  cv().notify_one();
4031 
4032  reporter_thread_.join();
4033  }
4034 
4035 private:
4036  static CONTEXT *ctx() {
4037  static CONTEXT data;
4038  return &data;
4039  }
4040 
4041  enum class crash_status { running, crashed, normal_exit, ending };
4042 
4043  static crash_status &crashed() {
4044  static crash_status data;
4045  return data;
4046  }
4047 
4048  static std::mutex &mtx() {
4049  static std::mutex data;
4050  return data;
4051  }
4052 
4053  static std::condition_variable &cv() {
4054  static std::condition_variable data;
4055  return data;
4056  }
4057 
4058  static HANDLE &thread_handle() {
4059  static HANDLE handle;
4060  return handle;
4061  }
4062 
4063  std::thread reporter_thread_;
4064 
4065  // TODO: how not to hardcode these?
4066  static const constexpr int signal_skip_recs =
4067 #ifdef __clang__
4068  // With clang, RtlCaptureContext also captures the stack frame of the
4069  // current function Below that, there ar 3 internal Windows functions
4070  4
4071 #else
4072  // With MSVC cl, RtlCaptureContext misses the stack frame of the current
4073  // function The first entries during StackWalk are the 3 internal Windows
4074  // functions
4075  3
4076 #endif
4077  ;
4078 
4079  static int &skip_recs() {
4080  static int data;
4081  return data;
4082  }
4083 
4084  static inline void terminator() {
4085  crash_handler(signal_skip_recs);
4086  abort();
4087  }
4088 
4089  static inline void signal_handler(int) {
4090  crash_handler(signal_skip_recs);
4091  abort();
4092  }
4093 
4094  static inline void __cdecl invalid_parameter_handler(const wchar_t *,
4095  const wchar_t *,
4096  const wchar_t *,
4097  unsigned int,
4098  uintptr_t) {
4099  crash_handler(signal_skip_recs);
4100  abort();
4101  }
4102 
4103  NOINLINE static LONG WINAPI crash_handler(EXCEPTION_POINTERS *info) {
4104  // The exception info supplies a trace from exactly where the issue was,
4105  // no need to skip records
4106  crash_handler(0, info->ContextRecord);
4107  return EXCEPTION_CONTINUE_SEARCH;
4108  }
4109 
4110  NOINLINE static void crash_handler(int skip, CONTEXT *ct = nullptr) {
4111 
4112  if (ct == nullptr) {
4113  RtlCaptureContext(ctx());
4114  } else {
4115  memcpy(ctx(), ct, sizeof(CONTEXT));
4116  }
4117  DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
4118  GetCurrentProcess(), &thread_handle(), 0, FALSE,
4119  DUPLICATE_SAME_ACCESS);
4120 
4121  skip_recs() = skip;
4122 
4123  {
4124  std::unique_lock<std::mutex> lk(mtx());
4125  crashed() = crash_status::crashed;
4126  }
4127 
4128  cv().notify_one();
4129 
4130  {
4131  std::unique_lock<std::mutex> lk(mtx());
4132  cv().wait(lk, [] { return crashed() != crash_status::crashed; });
4133  }
4134  }
4135 
4136  static void handle_stacktrace(int skip_frames = 0) {
4137  // printer creates the TraceResolver, which can supply us a machine type
4138  // for stack walking. Without this, StackTrace can only guess using some
4139  // macros.
4140  // StackTrace also requires that the PDBs are already loaded, which is done
4141  // in the constructor of TraceResolver
4142  Printer printer;
4143 
4144  StackTrace st;
4145  st.set_machine_type(printer.resolver().machine_type());
4146  st.set_context(ctx());
4147  st.set_thread_handle(thread_handle());
4148  st.load_here(32 + skip_frames);
4149  st.skip_n_firsts(skip_frames);
4150 
4151  printer.address = true;
4152  printer.print(st, std::cerr);
4153  }
4154 };
4155 
4156 #endif // BACKWARD_SYSTEM_WINDOWS
4157 
4158 #ifdef BACKWARD_SYSTEM_UNKNOWN
4159 
4161 public:
4162  SignalHandling(const std::vector<int> & = std::vector<int>()) {}
4163  bool init() { return false; }
4164  bool loaded() { return false; }
4165 };
4166 
4167 #endif // BACKWARD_SYSTEM_UNKNOWN
4168 
4169 } // namespace backward
4170 
4171 #endif /* H_GUARD */
void print_source_loc(std::ostream &os, const char *indent, const ResolvedTrace::SourceLoc &source_loc, void *addr=nullptr)
Definition: backward.hpp:3833
void reset(T new_val)
Definition: backward.hpp:526
std::vector< void * > _stacktrace
Definition: backward.hpp:746
enum MQTTPropertyCodes value
int success(int count)
Definition: test6.c:567
const_ref_t operator*() const
Definition: backward.hpp:560
std::vector< std::pair< unsigned, std::string > > lines_t
Definition: backward.hpp:3406
SourceFile::lines_t lines_t
Definition: backward.hpp:3542
bool is_open() const
Definition: backward.hpp:3425
T & move(T &v)
Definition: backward.hpp:395
#define nullptr
Definition: backward.hpp:386
lu_byte right
Definition: lparser.c:1229
std::string demangle(const char *funcname)
Definition: backward.hpp:994
std::string object_filename
Definition: backward.hpp:655
const std::vector< std::string > & get_paths_from_env_variable()
Definition: backward.hpp:3529
lu_byte left
Definition: lparser.c:1228
fallback_uintptr uintptr_t
Definition: format.h:314
lines_t & get_lines(unsigned line_start, unsigned line_count, lines_t &lines)
Definition: backward.hpp:3427
int_type overflow(int_type ch) override
Definition: backward.hpp:3607
lines_t get_lines(unsigned line_start, unsigned line_count)
Definition: backward.hpp:3477
#define malloc(x)
Definition: Heap.h:41
Trace operator[](size_t) const
Definition: backward.hpp:683
void print_header(std::ostream &os, size_t thread_id)
Definition: backward.hpp:3763
Definition: json.hpp:4042
ref_t operator[](size_t idx)
Definition: backward.hpp:561
std::vector< std::string > split_source_prefixes(const std::string &s)
Definition: backward.hpp:608
void operator()(U &ptr) const
Definition: backward.hpp:477
rm_ptr< T >::type & ref_t
Definition: backward.hpp:557
static int funcname(LexState *ls, expdesc *v)
Definition: lparser.c:1798
size_t thread_id() const
Definition: backward.hpp:686
lines_t get_coalesced_snippet(const std::string &filename, unsigned line_a, unsigned line_b, unsigned context_size)
Definition: backward.hpp:3564
void swap(SourceFile &b)
Definition: backward.hpp:3496
std::vector< char > buffer
Definition: backward.hpp:3631
handle & operator=(const handle &from)
Definition: backward.hpp:519
T mod(T x, int y)
Definition: chrono.h:693
#define min(A, B)
Definition: Log.c:64
#define max(A, B)
Definition: Socket.h:88
const char kBackwardPathDelimiter[]
Definition: backward.hpp:405
bool operator()(const lines_t::value_type &p)
Definition: backward.hpp:3490
void operator()(T &ptr) const
Definition: backward.hpp:481
details::demangler _demangler
Definition: backward.hpp:999
details::hashtable< std::string, SourceFile >::type src_files_t
Definition: backward.hpp:3583
void activate(ColorMode::type)
Definition: backward.hpp:3684
void set_color(Color::type)
Definition: backward.hpp:3686
#define next(ls)
Definition: llex.c:32
void *const * begin() const
Definition: backward.hpp:738
std::string object_function
Definition: backward.hpp:659
lines_t get_combined_snippet(const std::string &filename_a, unsigned line_a, const std::string &filename_b, unsigned line_b, unsigned context_size)
Definition: backward.hpp:3552
int dummy
Definition: lstrlib.c:1347
void activate(ColorMode::type, FILE *)
Definition: backward.hpp:3685
ResolvedTrace(const Trace &mini_trace)
Definition: backward.hpp:674
SnippetFactory _snippets
Definition: backward.hpp:3743
void swap(handle &b)
Definition: backward.hpp:547
void print_stacktrace(IT begin, IT end, std::ostream &os, size_t thread_id, Colorize &colorize)
Definition: backward.hpp:3755
FILE * print(ST &st, FILE *fp=stderr)
Definition: backward.hpp:3704
j template void())
Definition: json.hpp:3707
std::vector< SourceLoc > source_locs_t
Definition: backward.hpp:670
TraceResolver const & resolver() const
Definition: backward.hpp:3739
std::vector< std::string > get_paths_from_env_variable_impl()
Definition: backward.hpp:3520
unknown_tag current_tag
Definition: backward.hpp:417
SourceFile(const SourceFile &from)
Definition: backward.hpp:3505
const char * name
ColorMode::type color_mode
Definition: backward.hpp:3694
FILE * print(IT begin, IT end, FILE *fp=stderr, size_t thread_id=0)
Definition: backward.hpp:3721
const T & move(const T &v)
Definition: backward.hpp:394
details::handle< std::ifstream *, details::default_delete< std::ifstream * > > _file
Definition: backward.hpp:3518
bool operator!=(const SourceLoc &b) const
Definition: backward.hpp:651
size_t load_here(size_t=0)
Definition: backward.hpp:684
source_locs_t inliners
Definition: backward.hpp:671
Trace(void *_addr, size_t _idx)
Definition: backward.hpp:633
void update(T new_val)
Definition: backward.hpp:531
#define WINAPI
Definition: MQTTAsync.c:298
size_t size() const
Definition: backward.hpp:682
void print_trace(std::ostream &os, const ResolvedTrace &trace, Colorize &colorize)
Definition: backward.hpp:3771
MQTTClient c
Definition: test10.c:1656
dictionary context
Definition: test2.py:57
const void * ptr(const T *p)
Definition: format.h:3610
lines_t get_snippet(const std::string &filename, unsigned line_start, unsigned context_size)
Definition: backward.hpp:3544
void print_stacktrace(ST &st, std::ostream &os, Colorize &colorize)
Definition: backward.hpp:3746
SourceFile & get_src_file(const std::string &filename)
Definition: backward.hpp:3586
SourceFile(const std::string &path)
Definition: backward.hpp:3409
static std::string demangle(const char *funcname)
Definition: backward.hpp:572
int_type underflow() override
Definition: backward.hpp:3606
void print_snippet(std::ostream &os, const char *indent, const ResolvedTrace::SourceLoc &source_loc, Colorize &colorize, Color::type color_code, int context_size)
Definition: backward.hpp:3809
std::streamsize xsputn(const char_type *s, std::streamsize count) override
Definition: backward.hpp:3614
Trace operator[](size_t idx) const
Definition: backward.hpp:732
SignalHandling(const std::vector< int > &=std::vector< int >())
Definition: backward.hpp:4162
size_t load_from(void *, size_t=0)
Definition: backward.hpp:685
cfile_streambuf(FILE *_sink)
Definition: backward.hpp:3605
handle(const handle &from)
Definition: backward.hpp:515
std::ostream & print(IT begin, IT end, std::ostream &os, size_t thread_id=0)
Definition: backward.hpp:3731
bool operator==(const SourceLoc &b) const
Definition: backward.hpp:646
dictionary data
Definition: mqtt_test.py:22
#define NOINLINE
Definition: backward.hpp:71
size_t thread_id() const
Definition: backward.hpp:694
void skip_n_firsts(size_t)
Definition: backward.hpp:687
static int running
Definition: MQTTClient.c:281
constexpr auto resolve(R fun_ptr(Args...)) -> R(*)(Args...)
Definition: sol.hpp:18086
SourceFile & operator=(const SourceFile &from)
Definition: backward.hpp:3509
const T & operator->() const
Definition: backward.hpp:555
const rm_ptr< T >::type & const_ref_t
Definition: backward.hpp:558
TraceResolver _resolver
Definition: backward.hpp:3742
void skip_n_firsts(size_t n)
Definition: backward.hpp:696
Colorize(std::ostream &)
Definition: backward.hpp:3683
std::ostream & print(ST &st, std::ostream &os)
Definition: backward.hpp:3713
const std::string & demangle()
Definition: sol.hpp:8248
int len
Definition: utf-8.c:46
size_t skip_n_firsts() const
Definition: backward.hpp:720


plotjuggler
Author(s): Davide Faconti
autogenerated on Sun Dec 6 2020 03:47:33