Static Public Member Functions | List of all members
Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar > Struct Template Reference

Compute the (17,17)-Padé approximant to the exponential. More...

#include <MatrixExponential.h>

Static Public Member Functions

static void run (const MatrixType &arg, MatrixType &U, MatrixType &V, int &squarings)
 Compute Padé approximant to the exponential. More...
 

Detailed Description

template<typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
struct Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar >

Compute the (17,17)-Padé approximant to the exponential.

After exit, $ (V+U)(V-U)^{-1} $ is the Padé approximant of $ \exp(A) $ around $ A = 0 $.

This function activates only if your long double is double-double or quadruple.

Definition at line 198 of file MatrixExponential.h.

Member Function Documentation

template<typename MatrixType , typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
static void Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar >::run ( const MatrixType &  arg,
MatrixType &  U,
MatrixType &  V,
int &  squarings 
)
static

Compute Padé approximant to the exponential.

Computes U, V and squarings such that $ (V+U)(V-U)^{-1} $ is a Padé approximant of $ \exp(2^{-\mbox{squarings}}M) $ around $ M = 0 $, where $ M $ denotes the matrix arg. The degree of the Padé approximant and the value of squarings are chosen such that the approximation error is no more than the round-off error.


The documentation for this struct was generated from the following file:


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:10:38