sparse_extra.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 
11 // import basic and product tests for deprectaed DynamicSparseMatrix
12 #define EIGEN_NO_DEPRECATED_WARNING
13 #include "sparse_basic.cpp"
14 #include "sparse_product.cpp"
15 #include <Eigen/SparseExtra>
16 
17 template<typename SetterType,typename DenseType, typename Scalar, int Options>
18 bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
19 {
20  {
21  sm.setZero();
22  SetterType w(sm);
23  std::vector<Vector2i> remaining = nonzeroCoords;
24  while(!remaining.empty())
25  {
26  int i = internal::random<int>(0,static_cast<int>(remaining.size())-1);
27  w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
28  remaining[i] = remaining.back();
29  remaining.pop_back();
30  }
31  }
32  return sm.isApprox(ref);
33 }
34 
35 template<typename SetterType,typename DenseType, typename T>
36 bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
37 {
38  sm.setZero();
39  std::vector<Vector2i> remaining = nonzeroCoords;
40  while(!remaining.empty())
41  {
42  int i = internal::random<int>(0,static_cast<int>(remaining.size())-1);
43  sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
44  remaining[i] = remaining.back();
45  remaining.pop_back();
46  }
47  return sm.isApprox(ref);
48 }
49 
50 template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref)
51 {
52  const Index rows = ref.rows();
53  const Index cols = ref.cols();
54  typedef typename SparseMatrixType::Scalar Scalar;
55  enum { Flags = SparseMatrixType::Flags };
56 
57  double density = (std::max)(8./(rows*cols), 0.01);
58  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
59  typedef Matrix<Scalar,Dynamic,1> DenseVector;
60  Scalar eps = 1e-6;
61 
62  SparseMatrixType m(rows, cols);
63  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
64  DenseVector vec1 = DenseVector::Random(rows);
65 
66  std::vector<Vector2i> zeroCoords;
67  std::vector<Vector2i> nonzeroCoords;
68  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
69 
70  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
71  return;
72 
73  // test coeff and coeffRef
74  for (int i=0; i<(int)zeroCoords.size(); ++i)
75  {
76  VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
77  if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
78  VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
79  }
80  VERIFY_IS_APPROX(m, refMat);
81 
82  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
83  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
84 
85  VERIFY_IS_APPROX(m, refMat);
86 
87  // random setter
88 // {
89 // m.setZero();
90 // VERIFY_IS_NOT_APPROX(m, refMat);
91 // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
92 // std::vector<Vector2i> remaining = nonzeroCoords;
93 // while(!remaining.empty())
94 // {
95 // int i = internal::random<int>(0,remaining.size()-1);
96 // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
97 // remaining[i] = remaining.back();
98 // remaining.pop_back();
99 // }
100 // }
101 // VERIFY_IS_APPROX(m, refMat);
102 
103  VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
104  #ifdef EIGEN_UNORDERED_MAP_SUPPORT
105  VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
106  #endif
107  #ifdef _DENSE_HASH_MAP_H_
108  VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
109  #endif
110  #ifdef _SPARSE_HASH_MAP_H_
111  VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
112  #endif
113 
114 
115  // test RandomSetter
116  /*{
117  SparseMatrixType m1(rows,cols), m2(rows,cols);
118  DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
119  initSparse<Scalar>(density, refM1, m1);
120  {
121  Eigen::RandomSetter<SparseMatrixType > setter(m2);
122  for (int j=0; j<m1.outerSize(); ++j)
123  for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
124  setter(i.index(), j) = i.value();
125  }
126  VERIFY_IS_APPROX(m1, m2);
127  }*/
128 
129 
130 }
131 
133 {
134  for(int i = 0; i < g_repeat; i++) {
135  int s = Eigen::internal::random<int>(1,50);
136  CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(8, 8)) );
137  CALL_SUBTEST_2( sparse_extra(SparseMatrix<std::complex<double> >(s, s)) );
138  CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(s, s)) );
139 
140  CALL_SUBTEST_3( sparse_extra(DynamicSparseMatrix<double>(s, s)) );
141 // CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double>(s, s)) ));
142 // CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double,ColMajor,long int>(s, s)) ));
143 
144  CALL_SUBTEST_3( (sparse_product<DynamicSparseMatrix<float, ColMajor> >()) );
145  CALL_SUBTEST_3( (sparse_product<DynamicSparseMatrix<float, RowMajor> >()) );
146  }
147 }
void sparse_extra(const SparseMatrixType &ref)
XmlRpcServer s
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half() max(const half &a, const half &b)
Definition: Half.h:438
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
bool test_random_setter(SparseMatrix< Scalar, Options > &sm, const DenseType &ref, const std::vector< Vector2i > &nonzeroCoords)
TFSIMD_FORCE_INLINE const tfScalar & w() const
void test_sparse_extra()


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:50