polynomialutils.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/Polynomials>
12 #include <iostream>
13 
14 using namespace std;
15 
16 namespace Eigen {
17 namespace internal {
18 template<int Size>
19 struct increment_if_fixed_size
20 {
21  enum {
22  ret = (Size == Dynamic) ? Dynamic : Size+1
23  };
24 };
25 }
26 }
27 
28 template<typename _Scalar, int _Deg>
30 {
31  typedef internal::increment_if_fixed_size<_Deg> Dim;
32  typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
33  typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
34 
35  PolynomialType pols(deg+1);
36  EvalRootsType roots = EvalRootsType::Random(deg);
37  roots_to_monicPolynomial( roots, pols );
38 
39  EvalRootsType evr( deg );
40  for( int i=0; i<roots.size(); ++i ){
41  evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
42 
43  bool evalToZero = evr.isZero( test_precision<_Scalar>() );
44  if( !evalToZero ){
45  cerr << evr.transpose() << endl; }
46  VERIFY( evalToZero );
47 }
48 
49 template<typename _Scalar> void realRoots_to_monicPolynomial_scalar()
50 {
51  CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) );
52  CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) );
53  CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) );
54  CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) );
55  CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) );
56  CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) );
57  CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) );
58 
59  CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>(
60  internal::random<int>(18,26) )) );
61 }
62 
63 
64 
65 
66 template<typename _Scalar, int _Deg>
67 void CauchyBounds(int deg)
68 {
69  typedef internal::increment_if_fixed_size<_Deg> Dim;
70  typedef Matrix<_Scalar,Dim::ret,1> PolynomialType;
71  typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
72 
73  PolynomialType pols(deg+1);
74  EvalRootsType roots = EvalRootsType::Random(deg);
75  roots_to_monicPolynomial( roots, pols );
76  _Scalar M = cauchy_max_bound( pols );
77  _Scalar m = cauchy_min_bound( pols );
78  _Scalar Max = roots.array().abs().maxCoeff();
79  _Scalar min = roots.array().abs().minCoeff();
80  bool eval = (M >= Max) && (m <= min);
81  if( !eval )
82  {
83  cerr << "Roots: " << roots << endl;
84  cerr << "Bounds: (" << m << ", " << M << ")" << endl;
85  cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
86  }
87  VERIFY( eval );
88 }
89 
90 template<typename _Scalar> void CauchyBounds_scalar()
91 {
92  CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) );
93  CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) );
94  CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) );
95  CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) );
96  CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) );
97  CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) );
98  CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) );
99 
100  CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>(
101  internal::random<int>(18,26) )) );
102 }
103 
105 {
106  for(int i = 0; i < g_repeat; i++)
107  {
108  realRoots_to_monicPolynomial_scalar<double>();
109  realRoots_to_monicPolynomial_scalar<float>();
110  CauchyBounds_scalar<double>();
111  CauchyBounds_scalar<float>();
112  }
113 }
T poly_eval(const Polynomials &poly, const T &x)
Definition: LDLT.h:16
void test_polynomialutils()
void realRoots_to_monicPolynomial_test(int deg)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
void roots_to_monicPolynomial(const RootVector &rv, Polynomial &poly)
void realRoots_to_monicPolynomial_scalar()
void CauchyBounds_scalar()
void CauchyBounds(int deg)
int min(int a, int b)
const int Dynamic
Definition: Constants.h:21
NumTraits< typename Polynomial::Scalar >::Real cauchy_min_bound(const Polynomial &poly)
NumTraits< typename Polynomial::Scalar >::Real cauchy_max_bound(const Polynomial &poly)


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:37