matrix_function.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/MatrixFunctions>
12 
13 // Variant of VERIFY_IS_APPROX which uses absolute error instead of
14 // relative error.
15 #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
16 
17 template<typename Type1, typename Type2>
18 inline bool test_isApprox_abs(const Type1& a, const Type2& b)
19 {
20  return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
21 }
22 
23 
24 // Returns a matrix with eigenvalues clustered around 0, 1 and 2.
25 template<typename MatrixType>
27 {
28  typedef typename MatrixType::Index Index;
29  typedef typename MatrixType::Scalar Scalar;
30  typedef typename MatrixType::RealScalar RealScalar;
31  MatrixType diag = MatrixType::Zero(size, size);
32  for (Index i = 0; i < size; ++i) {
33  diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2)))
34  + internal::random<Scalar>() * Scalar(RealScalar(0.01));
35  }
36  MatrixType A = MatrixType::Random(size, size);
37  HouseholderQR<MatrixType> QRofA(A);
38  return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
39 }
40 
41 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
43 {
44  // Returns a matrix with eigenvalues clustered around 0 and +/- i.
45  static MatrixType run(const typename MatrixType::Index size);
46 };
47 
48 // Partial specialization for real matrices
49 template<typename MatrixType>
50 struct randomMatrixWithImagEivals<MatrixType, 0>
51 {
52  static MatrixType run(const typename MatrixType::Index size)
53  {
54  typedef typename MatrixType::Index Index;
55  typedef typename MatrixType::Scalar Scalar;
56  MatrixType diag = MatrixType::Zero(size, size);
57  Index i = 0;
58  while (i < size) {
59  Index randomInt = internal::random<Index>(-1, 1);
60  if (randomInt == 0 || i == size-1) {
61  diag(i, i) = internal::random<Scalar>() * Scalar(0.01);
62  ++i;
63  } else {
64  Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01);
65  diag(i, i+1) = alpha;
66  diag(i+1, i) = -alpha;
67  i += 2;
68  }
69  }
70  MatrixType A = MatrixType::Random(size, size);
71  HouseholderQR<MatrixType> QRofA(A);
72  return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
73  }
74 };
75 
76 // Partial specialization for complex matrices
77 template<typename MatrixType>
78 struct randomMatrixWithImagEivals<MatrixType, 1>
79 {
80  static MatrixType run(const typename MatrixType::Index size)
81  {
82  typedef typename MatrixType::Index Index;
83  typedef typename MatrixType::Scalar Scalar;
84  typedef typename MatrixType::RealScalar RealScalar;
85  const Scalar imagUnit(0, 1);
86  MatrixType diag = MatrixType::Zero(size, size);
87  for (Index i = 0; i < size; ++i) {
88  diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit
89  + internal::random<Scalar>() * Scalar(RealScalar(0.01));
90  }
91  MatrixType A = MatrixType::Random(size, size);
92  HouseholderQR<MatrixType> QRofA(A);
93  return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
94  }
95 };
96 
97 
98 template<typename MatrixType>
99 void testMatrixExponential(const MatrixType& A)
100 {
101  typedef typename internal::traits<MatrixType>::Scalar Scalar;
102  typedef typename NumTraits<Scalar>::Real RealScalar;
103  typedef std::complex<RealScalar> ComplexScalar;
104 
105  VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>));
106 }
107 
108 template<typename MatrixType>
109 void testMatrixLogarithm(const MatrixType& A)
110 {
111  typedef typename internal::traits<MatrixType>::Scalar Scalar;
112  typedef typename NumTraits<Scalar>::Real RealScalar;
113 
114  MatrixType scaledA;
115  RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff();
116  if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI))
117  scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum;
118  else
119  scaledA = A;
120 
121  // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X
122  MatrixType expA = scaledA.exp();
123  MatrixType logExpA = expA.log();
124  VERIFY_IS_APPROX(logExpA, scaledA);
125 }
126 
127 template<typename MatrixType>
128 void testHyperbolicFunctions(const MatrixType& A)
129 {
130  // Need to use absolute error because of possible cancellation when
131  // adding/subtracting expA and expmA.
132  VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
133  VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
134 }
135 
136 template<typename MatrixType>
137 void testGonioFunctions(const MatrixType& A)
138 {
139  typedef typename MatrixType::Scalar Scalar;
140  typedef typename NumTraits<Scalar>::Real RealScalar;
141  typedef std::complex<RealScalar> ComplexScalar;
142  typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,
143  MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
144 
145  ComplexScalar imagUnit(0,1);
146  ComplexScalar two(2,0);
147 
148  ComplexMatrix Ac = A.template cast<ComplexScalar>();
149 
150  ComplexMatrix exp_iA = (imagUnit * Ac).exp();
151  ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
152 
153  ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
154  VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
155 
156  ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
157  VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
158 }
159 
160 template<typename MatrixType>
161 void testMatrix(const MatrixType& A)
162 {
167 }
168 
169 template<typename MatrixType>
170 void testMatrixType(const MatrixType& m)
171 {
172  // Matrices with clustered eigenvalue lead to different code paths
173  // in MatrixFunction.h and are thus useful for testing.
174  typedef typename MatrixType::Index Index;
175 
176  const Index size = m.rows();
177  for (int i = 0; i < g_repeat; i++) {
178  testMatrix(MatrixType::Random(size, size).eval());
179  testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
181  }
182 }
183 
185 {
186  CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
187  CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
188  CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
189  CALL_SUBTEST_4(testMatrixType(Matrix2d()));
190  CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
191  CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
192  CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
193 }
void testMatrix(const MatrixType &A)
void testMatrixLogarithm(const MatrixType &A)
void testMatrixExponential(const MatrixType &A)
bool test_isApprox_abs(const Type1 &a, const Type2 &b)
#define EIGEN_PI
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
void testMatrixType(const MatrixType &m)
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
static MatrixType run(const typename MatrixType::Index size)
void testHyperbolicFunctions(const MatrixType &A)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
void test_matrix_function()
#define VERIFY_IS_APPROX_ABS(a, b)
MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
EIGEN_DEVICE_FUNC const Scalar & b
static MatrixType run(const typename MatrixType::Index size)
void testGonioFunctions(const MatrixType &A)
static MatrixType run(const typename MatrixType::Index size)


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:25