cxx11_tensor_reduction.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <limits>
12 #include <numeric>
13 #include <Eigen/CXX11/Tensor>
14 
15 using Eigen::Tensor;
16 
17 template <int DataLayout>
18 static void test_trivial_reductions() {
19  {
21  tensor.setRandom();
22  array<ptrdiff_t, 0> reduction_axis;
23 
24  Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
25  VERIFY_IS_EQUAL(result(), tensor());
26  }
27 
28  {
30  tensor.setRandom();
31  array<ptrdiff_t, 0> reduction_axis;
32 
33  Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis);
34  VERIFY_IS_EQUAL(result.dimension(0), 7);
35  for (int i = 0; i < 7; ++i) {
36  VERIFY_IS_EQUAL(result(i), tensor(i));
37  }
38  }
39 
40  {
41  Tensor<float, 2, DataLayout> tensor(2, 3);
42  tensor.setRandom();
43  array<ptrdiff_t, 0> reduction_axis;
44 
45  Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis);
46  VERIFY_IS_EQUAL(result.dimension(0), 2);
47  VERIFY_IS_EQUAL(result.dimension(1), 3);
48  for (int i = 0; i < 2; ++i) {
49  for (int j = 0; j < 3; ++j) {
50  VERIFY_IS_EQUAL(result(i, j), tensor(i, j));
51  }
52  }
53  }
54 }
55 
56 template <int DataLayout>
57 static void test_simple_reductions() {
58  Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
59  tensor.setRandom();
60  array<ptrdiff_t, 2> reduction_axis2;
61  reduction_axis2[0] = 1;
62  reduction_axis2[1] = 3;
63 
64  Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2);
65  VERIFY_IS_EQUAL(result.dimension(0), 2);
66  VERIFY_IS_EQUAL(result.dimension(1), 5);
67  for (int i = 0; i < 2; ++i) {
68  for (int j = 0; j < 5; ++j) {
69  float sum = 0.0f;
70  for (int k = 0; k < 3; ++k) {
71  for (int l = 0; l < 7; ++l) {
72  sum += tensor(i, k, j, l);
73  }
74  }
75  VERIFY_IS_APPROX(result(i, j), sum);
76  }
77  }
78 
79  {
80  Tensor<float, 0, DataLayout> sum1 = tensor.sum();
81  VERIFY_IS_EQUAL(sum1.rank(), 0);
82 
83  array<ptrdiff_t, 4> reduction_axis4;
84  reduction_axis4[0] = 0;
85  reduction_axis4[1] = 1;
86  reduction_axis4[2] = 2;
87  reduction_axis4[3] = 3;
88  Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4);
89  VERIFY_IS_EQUAL(sum2.rank(), 0);
90 
91  VERIFY_IS_APPROX(sum1(), sum2());
92  }
93 
94  reduction_axis2[0] = 0;
95  reduction_axis2[1] = 2;
96  result = tensor.prod(reduction_axis2);
97  VERIFY_IS_EQUAL(result.dimension(0), 3);
98  VERIFY_IS_EQUAL(result.dimension(1), 7);
99  for (int i = 0; i < 3; ++i) {
100  for (int j = 0; j < 7; ++j) {
101  float prod = 1.0f;
102  for (int k = 0; k < 2; ++k) {
103  for (int l = 0; l < 5; ++l) {
104  prod *= tensor(k, i, l, j);
105  }
106  }
107  VERIFY_IS_APPROX(result(i, j), prod);
108  }
109  }
110 
111  {
112  Tensor<float, 0, DataLayout> prod1 = tensor.prod();
113  VERIFY_IS_EQUAL(prod1.rank(), 0);
114 
115  array<ptrdiff_t, 4> reduction_axis4;
116  reduction_axis4[0] = 0;
117  reduction_axis4[1] = 1;
118  reduction_axis4[2] = 2;
119  reduction_axis4[3] = 3;
120  Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4);
121  VERIFY_IS_EQUAL(prod2.rank(), 0);
122 
123  VERIFY_IS_APPROX(prod1(), prod2());
124  }
125 
126  reduction_axis2[0] = 0;
127  reduction_axis2[1] = 2;
128  result = tensor.maximum(reduction_axis2);
129  VERIFY_IS_EQUAL(result.dimension(0), 3);
130  VERIFY_IS_EQUAL(result.dimension(1), 7);
131  for (int i = 0; i < 3; ++i) {
132  for (int j = 0; j < 7; ++j) {
133  float max_val = std::numeric_limits<float>::lowest();
134  for (int k = 0; k < 2; ++k) {
135  for (int l = 0; l < 5; ++l) {
136  max_val = (std::max)(max_val, tensor(k, i, l, j));
137  }
138  }
139  VERIFY_IS_APPROX(result(i, j), max_val);
140  }
141  }
142 
143  {
144  Tensor<float, 0, DataLayout> max1 = tensor.maximum();
145  VERIFY_IS_EQUAL(max1.rank(), 0);
146 
147  array<ptrdiff_t, 4> reduction_axis4;
148  reduction_axis4[0] = 0;
149  reduction_axis4[1] = 1;
150  reduction_axis4[2] = 2;
151  reduction_axis4[3] = 3;
152  Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4);
153  VERIFY_IS_EQUAL(max2.rank(), 0);
154 
155  VERIFY_IS_APPROX(max1(), max2());
156  }
157 
158  reduction_axis2[0] = 0;
159  reduction_axis2[1] = 1;
160  result = tensor.minimum(reduction_axis2);
161  VERIFY_IS_EQUAL(result.dimension(0), 5);
162  VERIFY_IS_EQUAL(result.dimension(1), 7);
163  for (int i = 0; i < 5; ++i) {
164  for (int j = 0; j < 7; ++j) {
165  float min_val = (std::numeric_limits<float>::max)();
166  for (int k = 0; k < 2; ++k) {
167  for (int l = 0; l < 3; ++l) {
168  min_val = (std::min)(min_val, tensor(k, l, i, j));
169  }
170  }
171  VERIFY_IS_APPROX(result(i, j), min_val);
172  }
173  }
174 
175  {
176  Tensor<float, 0, DataLayout> min1 = tensor.minimum();
177  VERIFY_IS_EQUAL(min1.rank(), 0);
178 
179  array<ptrdiff_t, 4> reduction_axis4;
180  reduction_axis4[0] = 0;
181  reduction_axis4[1] = 1;
182  reduction_axis4[2] = 2;
183  reduction_axis4[3] = 3;
184  Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4);
185  VERIFY_IS_EQUAL(min2.rank(), 0);
186 
187  VERIFY_IS_APPROX(min1(), min2());
188  }
189 
190  reduction_axis2[0] = 0;
191  reduction_axis2[1] = 1;
192  result = tensor.mean(reduction_axis2);
193  VERIFY_IS_EQUAL(result.dimension(0), 5);
194  VERIFY_IS_EQUAL(result.dimension(1), 7);
195  for (int i = 0; i < 5; ++i) {
196  for (int j = 0; j < 7; ++j) {
197  float sum = 0.0f;
198  int count = 0;
199  for (int k = 0; k < 2; ++k) {
200  for (int l = 0; l < 3; ++l) {
201  sum += tensor(k, l, i, j);
202  ++count;
203  }
204  }
205  VERIFY_IS_APPROX(result(i, j), sum / count);
206  }
207  }
208 
209  {
210  Tensor<float, 0, DataLayout> mean1 = tensor.mean();
211  VERIFY_IS_EQUAL(mean1.rank(), 0);
212 
213  array<ptrdiff_t, 4> reduction_axis4;
214  reduction_axis4[0] = 0;
215  reduction_axis4[1] = 1;
216  reduction_axis4[2] = 2;
217  reduction_axis4[3] = 3;
218  Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4);
219  VERIFY_IS_EQUAL(mean2.rank(), 0);
220 
221  VERIFY_IS_APPROX(mean1(), mean2());
222  }
223 
224  {
225  Tensor<int, 1> ints(10);
226  std::iota(ints.data(), ints.data() + ints.dimension(0), 0);
227 
228  TensorFixedSize<bool, Sizes<> > all;
229  all = ints.all();
230  VERIFY(!all());
231  all = (ints >= ints.constant(0)).all();
232  VERIFY(all());
233 
234  TensorFixedSize<bool, Sizes<> > any;
235  any = (ints > ints.constant(10)).any();
236  VERIFY(!any());
237  any = (ints < ints.constant(1)).any();
238  VERIFY(any());
239  }
240 }
241 
242 
243 template <int DataLayout>
244 static void test_reductions_in_expr() {
245  Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
246  tensor.setRandom();
247  array<ptrdiff_t, 2> reduction_axis2;
248  reduction_axis2[0] = 1;
249  reduction_axis2[1] = 3;
250 
251  Tensor<float, 2, DataLayout> result(2, 5);
252  result = result.constant(1.0f) - tensor.sum(reduction_axis2);
253  VERIFY_IS_EQUAL(result.dimension(0), 2);
254  VERIFY_IS_EQUAL(result.dimension(1), 5);
255  for (int i = 0; i < 2; ++i) {
256  for (int j = 0; j < 5; ++j) {
257  float sum = 0.0f;
258  for (int k = 0; k < 3; ++k) {
259  for (int l = 0; l < 7; ++l) {
260  sum += tensor(i, k, j, l);
261  }
262  }
263  VERIFY_IS_APPROX(result(i, j), 1.0f - sum);
264  }
265  }
266 }
267 
268 
269 template <int DataLayout>
270 static void test_full_reductions() {
271  Tensor<float, 2, DataLayout> tensor(2, 3);
272  tensor.setRandom();
273  array<ptrdiff_t, 2> reduction_axis;
274  reduction_axis[0] = 0;
275  reduction_axis[1] = 1;
276 
277  Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
278  VERIFY_IS_EQUAL(result.rank(), 0);
279 
280  float sum = 0.0f;
281  for (int i = 0; i < 2; ++i) {
282  for (int j = 0; j < 3; ++j) {
283  sum += tensor(i, j);
284  }
285  }
286  VERIFY_IS_APPROX(result(0), sum);
287 
288  result = tensor.square().sum(reduction_axis).sqrt();
289  VERIFY_IS_EQUAL(result.rank(), 0);
290 
291  sum = 0.0f;
292  for (int i = 0; i < 2; ++i) {
293  for (int j = 0; j < 3; ++j) {
294  sum += tensor(i, j) * tensor(i, j);
295  }
296  }
297  VERIFY_IS_APPROX(result(), sqrtf(sum));
298 }
299 
300 struct UserReducer {
301  static const bool PacketAccess = false;
302  UserReducer(float offset) : offset_(offset) {}
303  void reduce(const float val, float* accum) { *accum += val * val; }
304  float initialize() const { return 0; }
305  float finalize(const float accum) const { return 1.0f / (accum + offset_); }
306 
307  private:
308  const float offset_;
309 };
310 
311 template <int DataLayout>
313  Tensor<float, 2, DataLayout> tensor(5, 7);
314  tensor.setRandom();
315  array<ptrdiff_t, 1> reduction_axis;
316  reduction_axis[0] = 1;
317 
318  UserReducer reducer(10.0f);
319  Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer);
320  VERIFY_IS_EQUAL(result.dimension(0), 5);
321  for (int i = 0; i < 5; ++i) {
322  float expected = 10.0f;
323  for (int j = 0; j < 7; ++j) {
324  expected += tensor(i, j) * tensor(i, j);
325  }
326  expected = 1.0f / expected;
327  VERIFY_IS_APPROX(result(i), expected);
328  }
329 }
330 
331 template <int DataLayout>
332 static void test_tensor_maps() {
333  int inputs[2 * 3 * 5 * 7];
334  TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7);
335  TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5,
336  7);
337  const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const(
338  inputs, 2, 3, 5, 7);
339 
340  tensor_map.setRandom();
341  array<ptrdiff_t, 2> reduction_axis;
342  reduction_axis[0] = 1;
343  reduction_axis[1] = 3;
344 
345  Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis);
346  Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis);
348  tensor_map_const_const.sum(reduction_axis);
349 
350  for (int i = 0; i < 2; ++i) {
351  for (int j = 0; j < 5; ++j) {
352  int sum = 0;
353  for (int k = 0; k < 3; ++k) {
354  for (int l = 0; l < 7; ++l) {
355  sum += tensor_map(i, k, j, l);
356  }
357  }
358  VERIFY_IS_EQUAL(result(i, j), sum);
359  VERIFY_IS_EQUAL(result2(i, j), sum);
360  VERIFY_IS_EQUAL(result3(i, j), sum);
361  }
362  }
363 }
364 
365 template <int DataLayout>
366 static void test_static_dims() {
367  Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
368  Tensor<float, 2, DataLayout> out(72, 97);
369  in.setRandom();
370 
371 #if !EIGEN_HAS_CONSTEXPR
372  array<int, 2> reduction_axis;
373  reduction_axis[0] = 1;
374  reduction_axis[1] = 3;
375 #else
376  Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
377 #endif
378 
379  out = in.maximum(reduction_axis);
380 
381  for (int i = 0; i < 72; ++i) {
382  for (int j = 0; j < 97; ++j) {
383  float expected = -1e10f;
384  for (int k = 0; k < 53; ++k) {
385  for (int l = 0; l < 113; ++l) {
386  expected = (std::max)(expected, in(i, k, j, l));
387  }
388  }
389  VERIFY_IS_APPROX(out(i, j), expected);
390  }
391  }
392 }
393 
394 template <int DataLayout>
396  Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
397  Tensor<float, 2, DataLayout> out(97, 113);
398  in.setRandom();
399 
400 // Reduce on the innermost dimensions.
401 #if !EIGEN_HAS_CONSTEXPR
402  array<int, 2> reduction_axis;
403  reduction_axis[0] = 0;
404  reduction_axis[1] = 1;
405 #else
406  // This triggers the use of packets for ColMajor.
407  Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
408 #endif
409 
410  out = in.maximum(reduction_axis);
411 
412  for (int i = 0; i < 97; ++i) {
413  for (int j = 0; j < 113; ++j) {
414  float expected = -1e10f;
415  for (int k = 0; k < 53; ++k) {
416  for (int l = 0; l < 72; ++l) {
417  expected = (std::max)(expected, in(l, k, i, j));
418  }
419  }
420  VERIFY_IS_APPROX(out(i, j), expected);
421  }
422  }
423 }
424 
425 template <int DataLayout>
427  Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
428  Tensor<float, 2, DataLayout> out(72, 53);
429  in.setRandom();
430 
431 // Reduce on the innermost dimensions.
432 #if !EIGEN_HAS_CONSTEXPR
433  array<int, 2> reduction_axis;
434  reduction_axis[0] = 2;
435  reduction_axis[1] = 3;
436 #else
437  // This triggers the use of packets for RowMajor.
438  Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
439 #endif
440 
441  out = in.maximum(reduction_axis);
442 
443  for (int i = 0; i < 72; ++i) {
444  for (int j = 0; j < 53; ++j) {
445  float expected = -1e10f;
446  for (int k = 0; k < 97; ++k) {
447  for (int l = 0; l < 113; ++l) {
448  expected = (std::max)(expected, in(i, j, k, l));
449  }
450  }
451  VERIFY_IS_APPROX(out(i, j), expected);
452  }
453  }
454 }
455 
456 template <int DataLayout>
457 static void test_reduce_middle_dims() {
458  Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
459  Tensor<float, 2, DataLayout> out(72, 53);
460  in.setRandom();
461 
462 // Reduce on the innermost dimensions.
463 #if !EIGEN_HAS_CONSTEXPR
464  array<int, 2> reduction_axis;
465  reduction_axis[0] = 1;
466  reduction_axis[1] = 2;
467 #else
468  // This triggers the use of packets for RowMajor.
469  Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
470 #endif
471 
472  out = in.maximum(reduction_axis);
473 
474  for (int i = 0; i < 72; ++i) {
475  for (int j = 0; j < 113; ++j) {
476  float expected = -1e10f;
477  for (int k = 0; k < 53; ++k) {
478  for (int l = 0; l < 97; ++l) {
479  expected = (std::max)(expected, in(i, k, l, j));
480  }
481  }
482  VERIFY_IS_APPROX(out(i, j), expected);
483  }
484  }
485 }
486 
488  CALL_SUBTEST(test_trivial_reductions<ColMajor>());
489  CALL_SUBTEST(test_trivial_reductions<RowMajor>());
490  CALL_SUBTEST(test_simple_reductions<ColMajor>());
491  CALL_SUBTEST(test_simple_reductions<RowMajor>());
492  CALL_SUBTEST(test_reductions_in_expr<ColMajor>());
493  CALL_SUBTEST(test_reductions_in_expr<RowMajor>());
494  CALL_SUBTEST(test_full_reductions<ColMajor>());
495  CALL_SUBTEST(test_full_reductions<RowMajor>());
496  CALL_SUBTEST(test_user_defined_reductions<ColMajor>());
497  CALL_SUBTEST(test_user_defined_reductions<RowMajor>());
498  CALL_SUBTEST(test_tensor_maps<ColMajor>());
499  CALL_SUBTEST(test_tensor_maps<RowMajor>());
500  CALL_SUBTEST(test_static_dims<ColMajor>());
501  CALL_SUBTEST(test_static_dims<RowMajor>());
502  CALL_SUBTEST(test_innermost_last_dims<ColMajor>());
503  CALL_SUBTEST(test_innermost_last_dims<RowMajor>());
504  CALL_SUBTEST(test_innermost_first_dims<ColMajor>());
505  CALL_SUBTEST(test_innermost_first_dims<RowMajor>());
506  CALL_SUBTEST(test_reduce_middle_dims<ColMajor>());
507  CALL_SUBTEST(test_reduce_middle_dims<RowMajor>());
508 }
static void test_trivial_reductions()
static void test_reductions_in_expr()
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const
Definition: Tensor.h:101
static void test_tensor_maps()
void test_cxx11_tensor_reduction()
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor< Scalar_, NumIndices_, Options_, IndexType_ > & setRandom()
Definition: TensorBase.h:848
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const
Definition: Tensor.h:100
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half() max(const half &a, const half &b)
Definition: Half.h:438
float finalize(const float accum) const
static void test_innermost_last_dims()
static void test_full_reductions()
const mpreal sum(const mpreal tab[], const unsigned long int n, int &status, mp_rnd_t mode=mpreal::get_default_rnd())
Definition: mpreal.h:2381
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
void reduce(const float val, float *accum)
static const bool PacketAccess
UserReducer(float offset)
float initialize() const
static void test_innermost_first_dims()
static void test_static_dims()
static void test_reduce_middle_dims()
static void test_user_defined_reductions()
static void test_simple_reductions()
The tensor class.
Definition: Tensor.h:63


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:09