LU decomposition of a matrix with partial pivoting, and related features. More...
#include <ForwardDeclarations.h>
Public Member Functions | |
template<typename RhsType , typename DstType > | |
EIGEN_DEVICE_FUNC void | _solve_impl (const RhsType &rhs, DstType &dst) const |
template<bool Conjugate, typename RhsType , typename DstType > | |
EIGEN_DEVICE_FUNC void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
Index | cols () const |
template<typename InputType > | |
PartialPivLU & | compute (const EigenBase< InputType > &matrix) |
Scalar | determinant () const |
const Inverse< PartialPivLU > | inverse () const |
const MatrixType & | matrixLU () const |
PartialPivLU () | |
Default Constructor. More... | |
PartialPivLU (Index size) | |
Default Constructor with memory preallocation. More... | |
template<typename InputType > | |
PartialPivLU (const EigenBase< InputType > &matrix) | |
template<typename InputType > | |
PartialPivLU (EigenBase< InputType > &matrix) | |
const PermutationType & | permutationP () const |
RealScalar | rcond () const |
MatrixType | reconstructedMatrix () const |
Index | rows () const |
template<typename Rhs > | |
const Solve< PartialPivLU, Rhs > | solve (const MatrixBase< Rhs > &b) const |
Public Member Functions inherited from Eigen::SolverBase< PartialPivLU< _MatrixType > > | |
AdjointReturnType | adjoint () const |
const Solve< PartialPivLU< _MatrixType >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
SolverBase () | |
ConstTransposeReturnType | transpose () const |
~SolverBase () | |
Public Member Functions inherited from Eigen::EigenBase< Derived > | |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
EIGEN_DEVICE_FUNC Index | cols () const |
EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
EIGEN_DEVICE_FUNC Derived & | derived () |
EIGEN_DEVICE_FUNC const Derived & | derived () const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
EIGEN_DEVICE_FUNC Index | rows () const |
EIGEN_DEVICE_FUNC Index | size () const |
template<typename Dest > | |
EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
Protected Member Functions | |
void | compute () |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
signed char | m_det_p |
bool | m_isInitialized |
RealScalar | m_l1_norm |
MatrixType | m_lu |
PermutationType | m_p |
TranspositionType | m_rowsTranspositions |
LU decomposition of a matrix with partial pivoting, and related features.
_MatrixType | the type of the matrix of which we are computing the LU decomposition |
This class represents a LU decomposition of a square invertible matrix, with partial pivoting: the matrix A is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P is a permutation matrix.
Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class FullPivLU.
This is not a rank-revealing LU decomposition. Many features are intentionally absent from this class, such as rank computation. If you need these features, use class FullPivLU.
This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses in the general case. On the other hand, it is not suitable to determine whether a given matrix is invertible.
The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
This class supports the inplace decomposition mechanism.
Definition at line 250 of file ForwardDeclarations.h.
typedef SolverBase<PartialPivLU> Eigen::PartialPivLU< _MatrixType >::Base |
Definition at line 81 of file PartialPivLU.h.
typedef _MatrixType Eigen::PartialPivLU< _MatrixType >::MatrixType |
Definition at line 80 of file PartialPivLU.h.
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::PartialPivLU< _MatrixType >::PermutationType |
Definition at line 88 of file PartialPivLU.h.
typedef MatrixType::PlainObject Eigen::PartialPivLU< _MatrixType >::PlainObject |
Definition at line 90 of file PartialPivLU.h.
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::PartialPivLU< _MatrixType >::TranspositionType |
Definition at line 89 of file PartialPivLU.h.
anonymous enum |
Enumerator | |
---|---|
MaxRowsAtCompileTime | |
MaxColsAtCompileTime |
Definition at line 84 of file PartialPivLU.h.
Eigen::PartialPivLU< MatrixType >::PartialPivLU | ( | ) |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via PartialPivLU::compute(const MatrixType&).
Definition at line 292 of file PartialPivLU.h.
|
explicit |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
Definition at line 303 of file PartialPivLU.h.
|
explicit |
Constructor.
matrix | the matrix of which to compute the LU decomposition. |
Definition at line 315 of file PartialPivLU.h.
|
explicit |
Constructor for inplace decomposition
matrix | the matrix of which to compute the LU decomposition. |
Definition at line 328 of file PartialPivLU.h.
|
inline |
Definition at line 226 of file PartialPivLU.h.
|
inline |
Definition at line 248 of file PartialPivLU.h.
|
inlinestaticprotected |
Definition at line 276 of file PartialPivLU.h.
|
inline |
Definition at line 221 of file PartialPivLU.h.
|
inline |
Definition at line 129 of file PartialPivLU.h.
|
protected |
Definition at line 515 of file PartialPivLU.h.
PartialPivLU< MatrixType >::Scalar Eigen::PartialPivLU< MatrixType >::determinant | ( | ) | const |
Definition at line 539 of file PartialPivLU.h.
|
inline |
Definition at line 197 of file PartialPivLU.h.
|
inline |
Definition at line 141 of file PartialPivLU.h.
|
inline |
Definition at line 149 of file PartialPivLU.h.
|
inline |
*this
is the LU decomposition. Definition at line 184 of file PartialPivLU.h.
MatrixType Eigen::PartialPivLU< MatrixType >::reconstructedMatrix | ( | ) | const |
Definition at line 549 of file PartialPivLU.h.
|
inline |
Definition at line 220 of file PartialPivLU.h.
|
inline |
This method returns the solution x to the equation Ax=b, where A is the matrix of which *this is the LU decomposition.
b | the right-hand-side of the equation to solve. Can be a vector or a matrix, the only requirement in order for the equation to make sense is that b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
Example:
Output:
Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.
Definition at line 175 of file PartialPivLU.h.
|
protected |
Definition at line 287 of file PartialPivLU.h.
|
protected |
Definition at line 288 of file PartialPivLU.h.
|
protected |
Definition at line 286 of file PartialPivLU.h.
|
protected |
Definition at line 283 of file PartialPivLU.h.
|
protected |
Definition at line 284 of file PartialPivLU.h.
|
protected |
Definition at line 285 of file PartialPivLU.h.