Public Types | Public Member Functions | Private Attributes | List of all members
Eigen::MatrixComplexPowerReturnValue< Derived > Class Template Reference

Proxy for the matrix power of some matrix (expression). More...

#include <ForwardDeclarations.h>

Inheritance diagram for Eigen::MatrixComplexPowerReturnValue< Derived >:
Inheritance graph
[legend]

Public Types

typedef std::complex< typename Derived::RealScalar > ComplexScalar
 
typedef Derived::Index Index
 
typedef Derived::PlainObject PlainObject
 
- Public Types inherited from Eigen::ReturnByValue< MatrixComplexPowerReturnValue< Derived > >
typedef internal::dense_xpr_base< ReturnByValue >::type Base
 
typedef internal::traits< MatrixComplexPowerReturnValue< Derived > >::ReturnType ReturnType
 

Public Member Functions

Index cols () const
 
template<typename ResultType >
void evalTo (ResultType &res) const
 Compute the matrix power. More...
 
 MatrixComplexPowerReturnValue (const Derived &A, const ComplexScalar &p)
 Constructor. More...
 
Index rows () const
 
- Public Member Functions inherited from Eigen::ReturnByValue< MatrixComplexPowerReturnValue< Derived > >
const Unusablecoeff (Index) const
 
const Unusablecoeff (Index, Index) const
 
UnusablecoeffRef (Index)
 
UnusablecoeffRef (Index, Index)
 
EIGEN_DEVICE_FUNC Index cols () const
 
EIGEN_DEVICE_FUNC void evalTo (Dest &dst) const
 
EIGEN_DEVICE_FUNC Index rows () const
 

Private Attributes

const Derived & m_A
 
const ComplexScalar m_p
 

Detailed Description

template<typename Derived>
class Eigen::MatrixComplexPowerReturnValue< Derived >

Proxy for the matrix power of some matrix (expression).

Template Parameters
Derivedtype of the base, a matrix (expression).

This class holds the arguments to the matrix power until it is assigned or evaluated for some other reason (so the argument should not be changed in the meantime). It is the return type of MatrixBase::pow() and related functions and most of the time this is the only way it is used.

Definition at line 289 of file ForwardDeclarations.h.

Member Typedef Documentation

template<typename Derived>
typedef std::complex<typename Derived::RealScalar> Eigen::MatrixComplexPowerReturnValue< Derived >::ComplexScalar

Definition at line 650 of file MatrixPower.h.

template<typename Derived>
typedef Derived::Index Eigen::MatrixComplexPowerReturnValue< Derived >::Index

Definition at line 651 of file MatrixPower.h.

template<typename Derived>
typedef Derived::PlainObject Eigen::MatrixComplexPowerReturnValue< Derived >::PlainObject

Definition at line 649 of file MatrixPower.h.

Constructor & Destructor Documentation

template<typename Derived>
Eigen::MatrixComplexPowerReturnValue< Derived >::MatrixComplexPowerReturnValue ( const Derived &  A,
const ComplexScalar p 
)
inline

Constructor.

Parameters
[in]AMatrix (expression), the base of the matrix power.
[in]pcomplex scalar, the exponent of the matrix power.

Definition at line 659 of file MatrixPower.h.

Member Function Documentation

template<typename Derived>
Index Eigen::MatrixComplexPowerReturnValue< Derived >::cols ( void  ) const
inline

Definition at line 676 of file MatrixPower.h.

template<typename Derived>
template<typename ResultType >
void Eigen::MatrixComplexPowerReturnValue< Derived >::evalTo ( ResultType &  res) const
inline

Compute the matrix power.

Because p is complex, $ A^p $ is simply evaluated as $ \exp(p \log(A)) $.

Parameters
[out]result$ A^p $ where A and p are as in the constructor.

Definition at line 672 of file MatrixPower.h.

template<typename Derived>
Index Eigen::MatrixComplexPowerReturnValue< Derived >::rows ( void  ) const
inline

Definition at line 675 of file MatrixPower.h.

Member Data Documentation

template<typename Derived>
const Derived& Eigen::MatrixComplexPowerReturnValue< Derived >::m_A
private

Definition at line 679 of file MatrixPower.h.

template<typename Derived>
const ComplexScalar Eigen::MatrixComplexPowerReturnValue< Derived >::m_p
private

Definition at line 680 of file MatrixPower.h.


The documentation for this class was generated from the following files:


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:10:09